欧美精品手机一级在线播放,中文字幕在线欧美日韩,欧美精品中文字幕亚洲专区,国产免费观看网站

    <mark id="hrvb1"><strong id="hrvb1"></strong></mark>
  • <td id="hrvb1"></td>

    數(shù)學(xué)教案:《因式分解》

    時(shí)間:2025-01-06 09:34:55 秀雯 數(shù)學(xué)教案 我要投稿
    • 相關(guān)推薦

    數(shù)學(xué)教案:《因式分解》(通用10篇)

      作為一名無(wú)私奉獻(xiàn)的老師,總歸要編寫(xiě)教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。教案要怎么寫(xiě)呢?下面是小編幫大家整理的數(shù)學(xué)教案:《因式分解》,希望能夠幫助到大家。

    數(shù)學(xué)教案:《因式分解》(通用10篇)

      數(shù)學(xué)教案:《因式分解》 1

      教學(xué)目標(biāo):

      運(yùn)用平方差公式和完全平方公式分解因式,能說(shuō)出平方差公式和完全平方公式的特點(diǎn),會(huì)用提公因式法與公式法分解因式.培養(yǎng)學(xué)生的觀察、聯(lián)想能力,進(jìn)一步了解換元的思想方法.并能說(shuō)出提公因式在這類因式分解中的作用,能靈活應(yīng)用提公因式法、公式法分解因式以及因式分解的標(biāo)準(zhǔn).

      教學(xué)重點(diǎn)和難點(diǎn)

      1.平方差公式;

      2.完全平方公式;

      3.靈活運(yùn)用3種方法.

      教學(xué)過(guò)程:

      一、提出問(wèn)題,得到新知

      觀察下列多項(xiàng)式:x24和y225

      學(xué)生思考,教師總結(jié):

      (1)它們有兩項(xiàng),且都是兩個(gè)數(shù)的`平方差;

      (2)會(huì)聯(lián)想到平方差公式.

      公式逆向:a2b2=(a+b)(ab)

      如果多項(xiàng)式是兩數(shù)差的形式,并且這兩個(gè)數(shù)又都可以寫(xiě)成平方的形式,那么這個(gè)多項(xiàng)式可以運(yùn)用平方差公式分解因式

      二、運(yùn)用公式

      例1:填空

     、4a2=( )2

     、赽2=( )2

      ③0.16a4=( )2

     、1.21a2b2=( )2

      ⑤2x4=( )2

     、5x4y2=( )2

      解答:

     、4a2=(2a)2;

      ②b2=(b)2

     、0.16a4=(0.4a2)2

      ④1.21a2b2=(1.1ab)2

     、2x4=(x2)2

      ⑥5x4y2=(x2y)2

      例2:下列多項(xiàng)式能否用平方差公式進(jìn)行因式分解

     、1.21a2+0.01b2

     、4a2+625b2

     、16x549y4④4x236y2

      解答:

      ①1.21a2+0.01b2能用

     、4a2+625b2不能用

      ③16x549y4不能用

     、4x236y2不能用

      數(shù)學(xué)教案:《因式分解》 2

      教學(xué)目標(biāo)

      1.知識(shí)與技能

      能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式

      2.過(guò)程與方法

      使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過(guò)程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解

      3.情感、態(tài)度與價(jià)值觀

      培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值

      重、難點(diǎn)與關(guān)鍵

      1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式

      2.難點(diǎn):正確地確定多項(xiàng)式的公因式

      3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式

      方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的.公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪

      教學(xué)方法

      采用“啟發(fā)式”教學(xué)方法

      教學(xué)過(guò)程

      一、回顧交流,導(dǎo)入新知

      復(fù)習(xí)交流:

      下列從左到右的變形是否是因式分解,為什么?

      (1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);

      (3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;

      (5)x2-2xy+y2=(x-y)2

      問(wèn)題:

      1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

      2.多項(xiàng)式4x2-x和xy2-yz-y呢?

      請(qǐng)將上述多項(xiàng)式分別寫(xiě)成兩個(gè)因式的乘積的形式,并說(shuō)明理由

      教師歸納:我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y

      概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法

      二、小組合作,探究方法

      教師提問(wèn):多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

      師生共識(shí):提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪

      三、范例學(xué)習(xí),應(yīng)用所學(xué)

      例1:把-4x2yz-12xy2z+4xyz分解因式.

      解:-4x2yz-12xy2z+4xyz

      =-(4x2yz+12xy2z-4xyz)

      =-4xyz(x+3y-1)

      例2:分解因式,3a2(x-y)3-4b2(y-x)2

      思路點(diǎn)撥:觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

      解法1:3a2(x-y)3-4b2(y-x)2

      =-3a2(y-x)3-4b2(y-x)2

      =-[(y-x)2?3a2(y-x)+4b2(y-x)2]

      =-(y-x)2[3a2(y-x)+4b2]

      =-(y-x)2(3a2y-3a2x+4b2)

      解法2:3a2(x-y)3-4b2(y-x)2

      =(x-y)2?3a2(x-y)-4b2(x-y)2

      =(x-y)2[3a2(x-y)-4b2]

      =(x-y)2(3a2x-3a2y-4b2)

      例3:用簡(jiǎn)便的方法計(jì)算:0.84×12+12×0.6-0.44×12.

      教師活動(dòng):引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.

      解:0.84×12+12×0.6-0.44×12

      =12×(0.84+0.6-0.44)

      =12×1=12.

      教師活動(dòng):在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

      四、隨堂練習(xí),鞏固深化

      課本P167練習(xí)第1、2、3題.

      探研時(shí)空:

      利用提公因式法計(jì)算:

      0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

      五、課堂總結(jié),發(fā)展?jié)撃?/p>

      1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)公因式,在找公因式時(shí)應(yīng)注意:

      (1)系數(shù)要找公約數(shù);

      (2)字母要找各項(xiàng)都有的;

      (3)指數(shù)要找最低次冪.

      2.因式分解應(yīng)注意分解徹底,也就是說(shuō),分解到不能再分解為止

      六、布置作業(yè),專題突破

      課本P170習(xí)題15.4第1、4(1)、6題.

      數(shù)學(xué)教案:《因式分解》 3

      教學(xué)目標(biāo)

      1.知識(shí)與技能

      了解因式分解的意義,以及它與整式乘法的關(guān)系.

      2.過(guò)程與方法

      經(jīng)歷從分解因數(shù)到分解因式的類比過(guò)程,掌握因式分解的概念,感受因式分解在解決問(wèn)題中的作用.

      3.情感、態(tài)度與價(jià)值觀

      在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的.內(nèi)在含義與價(jià)值.

      重、難點(diǎn)與關(guān)鍵

      1.重點(diǎn):了解因式分解的意義,感受其作用.

      2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.

      3.關(guān)鍵:通過(guò)分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.

      教學(xué)方法

      采用“激趣導(dǎo)學(xué)”的教學(xué)方法.

      教學(xué)過(guò)程

      一、創(chuàng)設(shè)情境,激趣導(dǎo)入

      問(wèn)題牽引:

      請(qǐng)同學(xué)們探究下面的2個(gè)問(wèn)題:

      問(wèn)題1:720能被哪些數(shù)整除?談?wù)勀愕南敕?

      問(wèn)題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.

      二、豐富聯(lián)想,展示思維

      探索:你會(huì)做下面的填空嗎?

      1.ma+mb+mc=( )( );

      2.x2-4=( )( );

      3.x2-2xy+y2=( )2.

      師生共識(shí):把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.

      三、小組活動(dòng),共同探究

      問(wèn)題牽引:

      (1)下列各式從左到右的變形是否為因式分解:

     、(x+1)(x-1)=x2-1;

     、赼2-1+b2=(a+1)(a-1)+b2;

     、7x-7=7(x-1).

      (2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.

     、9x2(______)+y2=(3x+y)(_______);

     、趚2-4xy+(_______)=(x-_______)2.

      四、隨堂練習(xí),鞏固深化

      課本練習(xí).

      探研時(shí)空:計(jì)算:993-99能被100整除嗎?

      五、課堂總結(jié),發(fā)展?jié)撃?/p>

      由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:

      1.什么叫因式分解?

      2.因式分解與整式運(yùn)算有何區(qū)別?

      六、布置作業(yè),專題突破

      選用補(bǔ)充作業(yè).

      板書(shū)設(shè)計(jì)

      數(shù)學(xué)教案:《因式分解》 4

      教學(xué)目標(biāo)

      1.知識(shí)與技能

      會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.

      2.過(guò)程與方法

      經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過(guò)程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.

      3.情感、態(tài)度與價(jià)值觀

      培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問(wèn)題中的應(yīng)用價(jià)值.

      重、難點(diǎn)與關(guān)鍵

      1.重點(diǎn):利用平方差公式分解因式.

      2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的'徹底性.

      3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問(wèn)題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái).

      教學(xué)方法

      采用“問(wèn)題解決”的教學(xué)方法,讓學(xué)生在問(wèn)題的牽引下,推進(jìn)自己的思維.

      教學(xué)過(guò)程

      一、觀察探討,體驗(yàn)新知

      問(wèn)題牽引:

      請(qǐng)同學(xué)們計(jì)算下列各式.

      (1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

      學(xué)生活動(dòng):動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.

      (1)(a+5)(a-5)=a2-52=a2-25;

      (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

      教師活動(dòng):引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

      1.分解因式:a2-25;2.分解因式16m2-9n.

      學(xué)生活動(dòng):從逆向思維入手,很快得到下面答案:

      (1)a2-25=a2-52=(a+5)(a-5).

      (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

      教師活動(dòng):引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.

      平方差公式:a2-b2=(a+b)(a-b).

      評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).

      二、范例學(xué)習(xí),應(yīng)用所學(xué)

      例1:把下列各式分解因式:(投影顯示或板書(shū))

      (1)x2-9y2;(2)16x4-y4;

      (3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

      (5)m2(16x-y)+n2(y-16x).

      思路點(diǎn)撥:在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

      教師活動(dòng):?jiǎn)l(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.

      學(xué)生活動(dòng):分四人小組,合作探究.

      解:(1)x2-9y2=(x+3y)(x-3y);

      (2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

      (3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

      (4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);

      (5)m2(16x-y)+n2(y-16x)

      =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n)

      數(shù)學(xué)教案:《因式分解》 5

      一、背景介紹

      因式分解是代數(shù)式中的重要內(nèi)容,它與前一章整式和后一章分式聯(lián)系極為密切。因式分解的教學(xué)是在整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,因式分解方法的理論依據(jù)就是多項(xiàng)式乘法的逆變形。它不僅在多項(xiàng)式的除法、簡(jiǎn)便運(yùn)算中有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三角函數(shù)式的恒等變形提供了必要的基礎(chǔ)。因此,學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后續(xù)學(xué)習(xí),具有相當(dāng)重要的意義。

      二、教學(xué)設(shè)計(jì)

      【教學(xué)內(nèi)容分析】

      因式分解的概念是把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,它是因式分解方法的理論基礎(chǔ),也是本章中一個(gè)重要概念。教材在引入中是結(jié)合剪紙拼圖來(lái)闡述這一概念的,也可以與小學(xué)數(shù)學(xué)里因數(shù)分解的概念類比予以說(shuō)明。在教學(xué)時(shí)對(duì)因式分解這一概念不宜要求學(xué)生一次徹底了解,應(yīng)該在講授因式分解的三種基本方法時(shí),結(jié)合具體例題的分解過(guò)程和分解結(jié)果,說(shuō)明這一概念的意義,以達(dá)到逐步了解這一概念的教學(xué)目的。

      【教學(xué)目標(biāo)】

      1、認(rèn)知目標(biāo):

     。1)理解因式分解的概念和意義

      (2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

      2、能力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、判斷能力和創(chuàng)新能力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維能力和綜合運(yùn)用能力。

      3、情感目標(biāo):培養(yǎng)學(xué)生接受矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。

      【教學(xué)重點(diǎn)、難點(diǎn)】

      重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

      【教學(xué)準(zhǔn)備】

      實(shí)物投影儀、多媒體輔助教學(xué)。

      【教學(xué)過(guò)程】

      ㈠、情境導(dǎo)入

      看誰(shuí)算得快:(搶答)

      (1)若a=101,b=99,則a2-b2=___________;

      (2)若a=99,b=-1,則a2-2ab+b2=____________;

      (3)若x=-3,則20x2+60x=____________。

      【初一年級(jí)學(xué)生活波好動(dòng),好表現(xiàn),爭(zhēng)強(qiáng)好勝。情境導(dǎo)入借助搶答的方式進(jìn)行,引進(jìn)競(jìng)爭(zhēng)機(jī)制,可以使學(xué)生在參與的過(guò)程中提高興趣,并增強(qiáng)競(jìng)爭(zhēng)意識(shí)和探究欲望!

     、、探究新知

      1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

      (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

      (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

      【“與其拉馬喝水,不如讓它口渴”。探索最佳解題方法的過(guò)程,就是學(xué)生“口渴”的地方。由此引起學(xué)生的求知欲!

      2、觀察:a2-b2=(a+b)(a-b) ,

      a2-2ab+b2 = (a-b)2 ,

      20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)

      【利用教師的主導(dǎo)作用,把學(xué)生的無(wú)意識(shí)的觀察轉(zhuǎn)變?yōu)橛幸庾R(shí)的觀察,同時(shí)教師應(yīng)鼓勵(lì)學(xué)生大膽描述自己的觀察結(jié)果,并及時(shí)予以肯定!

      3、類比小學(xué)學(xué)過(guò)的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)

      【讓學(xué)生自己概括出所感知的知識(shí)內(nèi)容,有利于學(xué)生在實(shí)踐中感悟知識(shí)的生成過(guò)程,培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力!

      板書(shū)課題:§6.1因式分解

      因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。

     、纭⑶斑M(jìn)一步

      1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2 ,

      (a-b)2= a2-2ab+b2,

      20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

     。ㄒ⒁庾寣W(xué)生區(qū)分因式分解與整式乘法的區(qū)別,防止學(xué)生出現(xiàn)在進(jìn)行因式分解當(dāng)中,半路又做乘法的.錯(cuò)誤。)

      【注重?cái)?shù)學(xué)知識(shí)間的聯(lián)系,給學(xué)生提供探索與交流的空間,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的生成過(guò)程,由學(xué)生發(fā)現(xiàn)整式乘法與因式分解的相互關(guān)系,培養(yǎng)學(xué)生觀察、分析問(wèn)題的能力和逆向思維能力及創(chuàng)新能力!

      2、因式分解與整式乘法的關(guān)系:

      因式分解

      結(jié)合:a2-b2=========(a+b)(a-b)

      整式乘法

      說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

      結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。(多媒體展示學(xué)生得出的成果)

     、、鞏固新知

      1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

      (1)x2-3x+1=x(x-3)+1 ;

      (2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

      (3)2m(m-n)=2m2-2mn;

      (4)4x2-4x+1=(2x-1)2;

      (5)3a2+6a=3a(a+2);

      (6)x2-4+3x=(x-2)(x+2)+3x;

      (7)k2+ +2=(k+ )2;

      (8)18a3bc=3a2b?6ac。

      【針對(duì)學(xué)生易犯的錯(cuò)誤,制造認(rèn)知沖突,讓學(xué)生充分暴露錯(cuò)誤,然后通過(guò)分析、討論,達(dá)到理解的效果!

      2、你能寫(xiě)出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。

      【學(xué)生出題熱情、積極性高,因初一學(xué)生好表現(xiàn),因而能激發(fā)學(xué)生學(xué)習(xí)興趣,激活學(xué)生的思維。】

     、椤(yīng)用解釋

      例 檢驗(yàn)下列因式分解是否正確:

      (1)x2y-xy2=xy(x-y);

      (2)2x2-1=(2x+1)(2x-1);

      (3)x2+3x+2=(x+1)(x+2).

      分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。

      練習(xí) 計(jì)算下列各題,并說(shuō)明你的算法:(請(qǐng)學(xué)生板演)

      (1)872+87×13

      (2)1012-992

     、、思維拓展

      1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

      2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=

      【進(jìn)一步拓展學(xué)生在數(shù)學(xué)領(lǐng)域內(nèi)的視野,增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的興趣,使學(xué)生從小熱衷于數(shù)學(xué)的學(xué)習(xí)和探索。通過(guò)機(jī)動(dòng)題,了解學(xué)生對(duì)概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造能力,及時(shí)評(píng)價(jià),及時(shí)矯正!

      ㈦、課堂回顧

      今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說(shuō)出來(lái)大家分享。

      【課堂小結(jié)交給學(xué)生, 讓學(xué)生總結(jié)本節(jié)課中概念的發(fā)現(xiàn)過(guò)程,運(yùn)用概念分析問(wèn)題的過(guò)程,養(yǎng)成學(xué)生學(xué)習(xí)、總結(jié)、學(xué)習(xí)的良好習(xí)慣。唯有總結(jié)反思,才能控制思維操作,才能促進(jìn)理解,提高認(rèn)知水平,從而促進(jìn)數(shù)學(xué)觀點(diǎn)的形成和發(fā)展,更好地進(jìn)行知識(shí)建構(gòu),實(shí)現(xiàn)良性循環(huán)!

     、、布置作業(yè)

      教科書(shū)第153的作業(yè)題。

      【設(shè)計(jì)思想】

      葉圣陶先生曾說(shuō)過(guò)課堂教學(xué)的最高藝術(shù)是看學(xué)生,而不是看教師,看學(xué)生能否在課堂中煥發(fā)生命的活力。因此本教學(xué)是按“投疑——感知——概括——鞏固、應(yīng)用和拓展”的敘述模式呈現(xiàn)教學(xué)內(nèi)容的,這種呈現(xiàn)方式符合七年級(jí)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)規(guī)律,使學(xué)生從被動(dòng)的學(xué)習(xí)到主動(dòng)探索和發(fā)現(xiàn)的轉(zhuǎn)化中感受到學(xué)習(xí)與探索的樂(lè)趣。本堂課先采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性,再把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高能力。并在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過(guò)程,堅(jiān)持啟發(fā)式的教學(xué)方法,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手,積極參與到教學(xué)中來(lái),充分體現(xiàn)了學(xué)生的主動(dòng)性原則。并改變了傳統(tǒng)的言傳身教的方式,恰當(dāng)?shù)剡\(yùn)用了現(xiàn)代教育技術(shù),展現(xiàn)了一個(gè)平等、互動(dòng)的民主課堂。

      數(shù)學(xué)教案:《因式分解》 6

      一、教學(xué)目標(biāo)

      1.掌握“多──少”、“大──小”兩組反義詞。

      2.理解量詞“群、顆、堆”的意思,能正確使用一些量詞。

      3.正確、流利地朗讀課文。

      二、教學(xué)重難點(diǎn)

      認(rèn)字、寫(xiě)字和正確使用量詞。

      三、教學(xué)過(guò)程

      (一)復(fù)習(xí)檢查

      1.復(fù)習(xí)生字。

      2.朗讀課文。

      (二)學(xué)習(xí)課文,整體把握

      1.說(shuō)一說(shuō)、比一比。

      師:同學(xué)們都讀了課文,請(qǐng)告訴老師,他們?cè)诒仁裁?

      生:比大──小。

      生:比多──少。

      師:誰(shuí)和誰(shuí)在比大小,誰(shuí)和誰(shuí)在比多少?

      生:黃牛和花貓、蘋(píng)果和棗在比大小。

      生:鴨子和鳥(niǎo)、杏子和桃在比多少。

      師:黃牛和花貓、鴨子和鳥(niǎo)都是動(dòng)物這是一類的,它們可以放在一起來(lái)比較。蘋(píng)果和棗、杏子和桃都是水果,可以放在一起比較。

      2.認(rèn)識(shí)量詞。

      課件出示課文:

      一(頭)黃牛一(只)貓

      一(個(gè))蘋(píng)果一(顆)棗

      一(群)鴨子一(只)鳥(niǎo)

      一(堆)杏子一(個(gè))桃

      師:括號(hào)內(nèi)的字表示量詞。在說(shuō)一些物體時(shí)要用上這類的表示數(shù)量的詞。

      師:在上面的這些圖片中(課件出示一些動(dòng)物圖片)你能說(shuō)一說(shuō)嗎?

      生:一頭豬。

      生:一只兔。

      生:一只雞,一群鳥(niǎo)。

      師:對(duì)了,多的'時(shí)候用一(群),還能說(shuō)一群羊、一群螞蟻、一群大雁……

      師:我們?cè)賮?lái)看這些可以用什么量詞,你能說(shuō)嗎?

      生:一個(gè)西瓜,一堆西瓜。

      生:一棵樹(shù),一顆星。

      師:這兩個(gè)字不一樣,表示的物體也不一樣,“棵”一般用在植物類,“顆”一般用在圓圓的、小小的、粒狀的東西。

      生:一棵白菜,一顆石頭。

      生:一顆心,一顆種子。

      3.我會(huì)說(shuō)。

      (1)用自己喜歡的方式讀課文。

      (2)練習(xí)課后“我會(huì)說(shuō)”。

      一(朵)花一(把)扇子一(本)書(shū)一(件)衣服一(雙)鞋一(塊)西瓜一(輛)車

      (3)續(xù)編兒歌。

      學(xué)生先說(shuō)一說(shuō)生活中的量詞,思考后續(xù)編兒歌。

      例:

      一個(gè)大,一個(gè)小,一頭大象一只兔。

      一個(gè)皮球一顆扣。

      一邊多,一邊少,一群山羊一只雞。

      一堆蘿卜一根蔥。

      (三)指導(dǎo)生字,書(shū)寫(xiě)生字

      1.課件出示生字,學(xué)生觀察生字。

      課件展示書(shū)寫(xiě)過(guò)程,書(shū)寫(xiě)順序上有什么相同的地方?重點(diǎn)看筆順:先中間后兩邊。

      引導(dǎo)學(xué)習(xí)新筆畫(huà)“豎鉤”,注意“少”上邊的“小”沒(méi)鉤。

      2.教師指導(dǎo)、示范,學(xué)生書(shū)空。

      3.學(xué)生描紅。

      4.展示學(xué)生作業(yè)。

      數(shù)學(xué)教案:《因式分解》 7

      教學(xué)目標(biāo):

      理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。

      考查重難點(diǎn)與常見(jiàn)題型:

      考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

      教學(xué)過(guò)程:

      因式分解知識(shí)點(diǎn)

      多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的'積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

      (1)提公因式法

      如多項(xiàng)式

      其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

     。2)運(yùn)用公式法,即用

      寫(xiě)出結(jié)果。

     。3)十字相乘法

      對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足

      a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

     。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

      分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

     。5)求根公式法:如果有兩個(gè)根X1,X2,那么

      2、教學(xué)實(shí)例:學(xué)案示例

      3、課堂練習(xí):學(xué)案作業(yè)

      4、課堂:

      5、板書(shū):

      6、課堂作業(yè):學(xué)案作業(yè)

      7、教學(xué)反思:

      數(shù)學(xué)教案:《因式分解》 8

      教學(xué)目標(biāo)

     、僭谡莆樟私庖蚴椒纸庖饬x的基礎(chǔ)上,會(huì)運(yùn)用平方差公式和完全平方公式對(duì)比較簡(jiǎn)單的多項(xiàng)式進(jìn)行因式分解.

     、谠谶\(yùn)用公式法進(jìn)行因式分解的同時(shí)培養(yǎng)學(xué)生的觀察、比較和判斷能力以及運(yùn)算能力,用不同的方法分解因式可以提高綜合運(yùn)用知識(shí)的能力.

     、圻M(jìn)一步體驗(yàn)“整體”的思想,培養(yǎng)“換元”的意識(shí).

      教學(xué)重點(diǎn)與難點(diǎn)

      重點(diǎn):運(yùn)用完全平方公式法進(jìn)行因式分解.

      難點(diǎn):觀察多項(xiàng)式的特點(diǎn),判斷是否符合公式的特征和綜合運(yùn)用分解的方法,并完整地進(jìn)行分解.

      教學(xué)準(zhǔn)備

      要求學(xué)生對(duì)完全平方公式準(zhǔn)確理解.

      教學(xué)設(shè)計(jì)

      問(wèn)題:你能將多項(xiàng)式a2+2ab+b2和a2-2ab+b2因式分解嗎?這兩個(gè)多項(xiàng)式有什么特點(diǎn)?

      建議:由于受到前面用平方差公式分解因式的'影響,學(xué)生對(duì)于這兩個(gè)多項(xiàng)式因式分解比較容易想到用完全平方公式,學(xué)生容易接受,教師要把重點(diǎn)放在研究公式的特征上來(lái).

      注:可采用讓學(xué)生自主討論的方式進(jìn)行教學(xué),引導(dǎo)學(xué)生從多項(xiàng)式的項(xiàng)數(shù)、每項(xiàng)的特點(diǎn)、整個(gè)多項(xiàng)式的特點(diǎn)等幾個(gè)方面進(jìn)行研究.然后交流各自的體會(huì).

      把多項(xiàng)式向公式的方向變形和轉(zhuǎn)化.

      例5分解因式

      (1)16x2+24x+9 (2)-x2+4x-42

      注:訓(xùn)練學(xué)生運(yùn)用完全平方公式分解因式,要盡可能地讓學(xué)生說(shuō)和做,引導(dǎo)學(xué)生把多項(xiàng)式與公式進(jìn)行比較找出不同點(diǎn),把多項(xiàng)式向公式的方向轉(zhuǎn)化.

      例6分解因式

      (1)3ax2+6ax+3a2

      (2)(a+b)2-12(a+b)+36

      注:學(xué)生仔細(xì)觀察多項(xiàng)式的特點(diǎn),教師適當(dāng)提醒和指導(dǎo),要從公式的形式和特點(diǎn)上進(jìn)行比較.(可把a(bǔ)+b看作一個(gè)整體,設(shè)a+b=)

      第2小題注意滲透換整體和換元的思想.

      鞏固練習(xí)

      教科書(shū)第170頁(yè)的練習(xí)題.

      小結(jié)提高

      1.舉一個(gè)例子說(shuō)說(shuō)應(yīng)用完全平方公式分解因式的多項(xiàng)式應(yīng)具有怎樣的特征.

      2.談?wù)劧囗?xiàng)式因式分解的思考方向和分解的步驟.

      3.談?wù)劧囗?xiàng)式因式分解的注意點(diǎn).

      注:對(duì)這些問(wèn)題進(jìn)行回顧和小結(jié)能從大的方面把握因式分解的方向和培養(yǎng)觀察能力.

      布置作業(yè)

      1.必做題:教科書(shū)第171頁(yè)習(xí)題15.4第4題,第5題;

      2.選做題:教科書(shū)第171頁(yè)第10題;

      數(shù)學(xué)教案:《因式分解》 9

      教學(xué)目標(biāo):

      1、學(xué)生能夠理解因式分解的概念。

      2、學(xué)生能夠應(yīng)用因式分解解決實(shí)際問(wèn)題。

      3、學(xué)生能夠簡(jiǎn)化代數(shù)式并解決相關(guān)的數(shù)學(xué)題目。

      教學(xué)準(zhǔn)備:

      1、白板、黑板或投影儀來(lái)展示教學(xué)內(nèi)容。

      2、學(xué)生練習(xí)冊(cè)或作業(yè)本。

      教學(xué)步驟:

      步驟1:引入因式分解概念(10分鐘)

      學(xué)生會(huì)發(fā)現(xiàn)數(shù)學(xué)中的代數(shù)式經(jīng)常出現(xiàn)多個(gè)項(xiàng)的乘積,比如(a+b)、(a-b)等。引入因式分解的概念,解釋代數(shù)式可以進(jìn)行因式分解,從而更好地理解和簡(jiǎn)化代數(shù)式。

      步驟2:理解因式分解的重要性(15分鐘)

      在這一部分,老師可以通過(guò)大量的實(shí)例,如多項(xiàng)式的乘積、簡(jiǎn)化分?jǐn)?shù)等,來(lái)幫助學(xué)生理解因式分解在求解問(wèn)題和簡(jiǎn)化計(jì)算中的重要性。

      步驟3:展示因式分解的步驟(10分鐘)

      解釋因式分解的步驟,例如將代數(shù)式進(jìn)行拆分,找到公因子,應(yīng)用分配律,最終將代數(shù)式簡(jiǎn)化為乘積的形式。通過(guò)在黑板上解決一些示例問(wèn)題,讓學(xué)生理解具體的步驟。

      步驟4:實(shí)際應(yīng)用案例(20分鐘)

      給學(xué)生一些實(shí)際的應(yīng)用案例,如利用因式分解解決面積和周長(zhǎng)的'問(wèn)題,解決一元二次方程的根等。讓學(xué)生通過(guò)解題來(lái)鞏固他們對(duì)因式分解的理解并應(yīng)用所學(xué)知識(shí)。

      步驟5:團(tuán)隊(duì)合作活動(dòng)(15分鐘)

      將學(xué)生分成小組,給每個(gè)小組一個(gè)因式分解的問(wèn)題。要求學(xué)生協(xié)作解決問(wèn)題,并在規(guī)定時(shí)間內(nèi)完成,然后展示他們的解決方案。通過(guò)這種互動(dòng)活動(dòng),學(xué)生可以互相學(xué)習(xí)并鞏固因式分解的知識(shí)。

      步驟6:總結(jié)和擴(kuò)展(10分鐘)

      總結(jié)因式分解的概念和步驟,并鼓勵(lì)學(xué)生在課后進(jìn)一步探索因式分解的應(yīng)用,如解決更復(fù)雜的代數(shù)問(wèn)題,求解方程等。鼓勵(lì)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的因式分解的重要性,并將其擴(kuò)展到更廣泛的數(shù)學(xué)領(lǐng)域。

      擴(kuò)展活動(dòng):

      1、請(qǐng)學(xué)生自行搜索因式分解的應(yīng)用實(shí)例,并在下節(jié)課上進(jìn)行分享。

      2、提供更復(fù)雜的代數(shù)式讓學(xué)生進(jìn)行因式分解,并進(jìn)行討論和解釋。

      3、給學(xué)生類似于迷思或解謎的數(shù)學(xué)問(wèn)題,讓他們運(yùn)用因式分解的技巧解決問(wèn)題。

      教學(xué)評(píng)估方式:

      1、在課堂上觀察學(xué)生對(duì)因式分解概念的理解程度。

      2、讓學(xué)生解決一些基本的因式分解題目,并批改他們的答案。

      3、觀察學(xué)生在團(tuán)隊(duì)合作活動(dòng)中的表現(xiàn)和解決問(wèn)題的能力。

      結(jié)語(yǔ):

      通過(guò)這份因式分解英語(yǔ)教案,學(xué)生能夠在實(shí)際例子和互動(dòng)活動(dòng)中更好地理解因式分解的概念和步驟,并學(xué)會(huì)應(yīng)用因式分解解決數(shù)學(xué)問(wèn)題。這樣的教學(xué)方法將幫助學(xué)生培養(yǎng)數(shù)學(xué)思維能力和解決問(wèn)題的技巧。通過(guò)互動(dòng)和擴(kuò)展活動(dòng),學(xué)生還能夠深入探索因式分解在數(shù)學(xué)中的更多應(yīng)用,進(jìn)一步拓寬他們的知識(shí)面。

      數(shù)學(xué)教案:《因式分解》 10

      一、教材分析

      1、關(guān)于地位與作用。

      今天我說(shuō)課的內(nèi)容是浙教版七年級(jí)數(shù)學(xué)下冊(cè)第六章《因式分解》第四節(jié)課的內(nèi)容。因式分解是代數(shù)式的一種重要恒等變形,它是學(xué)習(xí)分式的基礎(chǔ),又在恒等變形、代數(shù)式的運(yùn)算、解方程、函數(shù)中有廣泛的應(yīng)用。就本節(jié)課而言,著重闡述了三個(gè)方面,一是因式分解在簡(jiǎn)單的多項(xiàng)式除法的應(yīng)用;二是利用因式分解求解簡(jiǎn)單的一元二次方程;三是因式分解在數(shù)學(xué)應(yīng)用問(wèn)題中的綜合運(yùn)用。通過(guò)本節(jié)課的學(xué)習(xí),不僅使學(xué)生鞏固因式分解的概念和原理,而且又為后面代數(shù)的學(xué)習(xí)作好了充分的準(zhǔn)備。

      2、關(guān)于教學(xué)目標(biāo)。

      根據(jù)這一節(jié)課的內(nèi)容,對(duì)于因式分解的應(yīng)用在整個(gè)代數(shù)教學(xué)中的地位和作用,我制定了以下教學(xué)目標(biāo):

     。ㄒ唬┲R(shí)目標(biāo):

     、贂(huì)用平方差公式和完全平方公式分解因式;

     、跁(huì)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法及求解簡(jiǎn)單的一元二次方程。

     。ǘ┠芰δ繕(biāo):

     、俪醪綍(huì)綜合運(yùn)用因式分解知識(shí)解決一些簡(jiǎn)單的數(shù)學(xué)應(yīng)用問(wèn)題;

     、谂囵B(yǎng)分工協(xié)作及合作能力,鍛煉學(xué)生的語(yǔ)言表達(dá)及用數(shù)學(xué)語(yǔ)言的能力。

     、 培養(yǎng)學(xué)生觀察、分析、歸納的能力,并向?qū)W生滲透對(duì)比、類比的數(shù)學(xué)思想方法。

     。ㄈ 情感目標(biāo):

      培養(yǎng)學(xué)生積極主動(dòng)參與的意識(shí),使學(xué)生形成自主學(xué)習(xí)、合作學(xué)習(xí)的良好的學(xué)習(xí)習(xí)慣。并且讓學(xué)生明確數(shù)學(xué)學(xué)習(xí)的重要性,讓學(xué)生在利用數(shù)學(xué)知識(shí)解決生活實(shí)際問(wèn)題中體驗(yàn)快樂(lè)。

      3、關(guān)于教學(xué)重點(diǎn)與難點(diǎn)。

      本節(jié)課利用因式分解知識(shí)解決問(wèn)題是學(xué)習(xí)的關(guān)鍵,因此我將本課的學(xué)習(xí)重點(diǎn)、難點(diǎn)確定為:

      學(xué)習(xí)的重點(diǎn):

      ①會(huì)用平方差公式和完全平方公式分解因式;

     、跁(huì)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法及求解簡(jiǎn)單的一元二次方程。

      學(xué)習(xí)的難點(diǎn):

     、僖蚴椒纸膺^(guò)程中出現(xiàn)的符號(hào)問(wèn)題,整體思想和換元思想的應(yīng)用。

     、诰C合運(yùn)用因式分解知識(shí)解決數(shù)學(xué)應(yīng)用問(wèn)題。

      4、關(guān)于教法與學(xué)法。

      學(xué)情分析:

     、倨吣昙(jí)學(xué)生對(duì)于代數(shù)式的運(yùn)算較之有理數(shù)運(yùn)算有較大的困難,由于因式分解是乘法運(yùn)算的逆運(yùn)算,有部分學(xué)生對(duì)于此概念容易混淆

      ②對(duì)于平方差公式和完全平方公式,有部分學(xué)生容易在應(yīng)用時(shí)混淆。

     、蹖(duì)于一元二次方程求解問(wèn)題,學(xué)生是初次接觸,對(duì)于方程的根的情況較難理解。

      ④因式分解的綜合應(yīng)用上學(xué)生困難較大。

      教法與學(xué)法是互相和統(tǒng)一的,正如新《數(shù)學(xué)課程標(biāo)準(zhǔn)》所要求的,讓學(xué)生“動(dòng)手實(shí)踐、自主探索、合作交流 ”。就本節(jié)課而言,根據(jù)學(xué)生在學(xué)習(xí)中可能出現(xiàn)的困難,本節(jié)課在教學(xué)中主要采用“嘗試教學(xué)法”,以學(xué)生為主體,以親身體驗(yàn)為主線,教師在課堂中主要起到點(diǎn)撥和組織作用。利用嘗試教學(xué),讓學(xué)生主動(dòng)暴露思維過(guò)程,及時(shí)得到信息的反饋。

      注:不管用什么教法,一節(jié)課應(yīng)該不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終對(duì)學(xué)生充滿情感、創(chuàng)造和諧的課堂氛圍,這是最重要的。

      教學(xué)思想:整體思想和換元思想的體現(xiàn)。

      二、教學(xué)過(guò)程:

      本節(jié)課,一共設(shè)以下幾個(gè)環(huán)節(jié)

      第一環(huán)節(jié),設(shè)置問(wèn)題,復(fù)習(xí)回顧:

      興趣是最好的老師,可以激發(fā)情感,喚起某種動(dòng)機(jī),從而引導(dǎo)學(xué)生成為學(xué)習(xí)的主人。初一學(xué)生在學(xué)習(xí)過(guò)程中,能積極地、主動(dòng)地去探討問(wèn)題,這是學(xué)習(xí)成功地一個(gè)保障。

      小小考場(chǎng): 利用多媒體課件,依次出示

     。1)a2+a (2)a2–4; (3)a2+2a+1

      說(shuō)明:① 鞏固因式分解的兩種基本解法;

      ②復(fù)習(xí)鞏固兩個(gè)基本公式。

      第二環(huán)節(jié), 嘗試練一練:(預(yù)設(shè)題)

     、 a2÷(-a ) ② (a2+a)÷a

     、 (xy2—2xy)÷(y—2) ④ (9a2—4)÷(2—3a)

      說(shuō)明:1、本題前兩小題可請(qǐng)學(xué)生口答,后兩題請(qǐng)兩位同學(xué)上黑板板演其他同學(xué)自己先做,然后糾正黑板上的錯(cuò)誤。

      2、通過(guò)預(yù)設(shè)題,層層遞進(jìn),為例題的理解作了個(gè)鋪墊,降低了本節(jié)課的難點(diǎn),可以讓學(xué)生自己理解書(shū)本例1。

      3、請(qǐng)同學(xué)及時(shí)歸納用因式分解解決代數(shù)式的除法的方法和步驟:

     、賹(duì)每一個(gè)能因式分解的多項(xiàng)式進(jìn)行因式分解;

     、诩s去相同的部分;

      ③注意符號(hào)問(wèn)題,整體思想的'應(yīng)用 。

      4、安排這一過(guò)程的意圖是:通過(guò)嘗試教學(xué),引導(dǎo)學(xué)生主動(dòng)探求,造求學(xué)生自主學(xué)習(xí)的積極勢(shì)態(tài),通過(guò)一定的練習(xí),達(dá)到知覺(jué)水平上的運(yùn)用,加深學(xué)生對(duì)因式分解概念的理解,從而突出本節(jié)課的重點(diǎn)。

      第三環(huán)節(jié),開(kāi)動(dòng)小火車(填空)

      1、(a2—4)÷(a+2)= 2、(x2+2xy+y2)÷(x+y)=

      3、 (ab2+a2b)÷(a+b)= 4、(x2—49)÷(7—x)=

      說(shuō)明:本題先給學(xué)生3~5鐘思考,采用開(kāi)動(dòng)小火車形式既訓(xùn)練了學(xué)生的解題速度又是對(duì)例1的及時(shí)鞏固。

      第四環(huán)節(jié),合作探索,共同發(fā)現(xiàn):

      以四人一組分小組討論書(shū)本的合作學(xué)習(xí)內(nèi)容,并請(qǐng)幾個(gè)小組代表發(fā)表見(jiàn)解,對(duì)于學(xué)生的發(fā)言應(yīng)盡量鼓勵(lì)。

      分析:由AB=0可知A=0或B=0,利用此結(jié)論解方程(2x+3)(2x—3)=0可得2x+3=0或2x—3=0。

      第五環(huán)節(jié),例題精析:

      例、(2x-1)2=(x+2)2

      分析:本例的教學(xué)是本節(jié)課的一個(gè)難點(diǎn),首先,給學(xué)生一定的時(shí)間思考討論,教師適當(dāng)引導(dǎo)學(xué)生思對(duì)于本題的求解教師可板書(shū)過(guò)程,并強(qiáng)調(diào)利用因式分解求解簡(jiǎn)單的一元二次方程的步驟和注意點(diǎn):

      ①求解原理是:由AB=0可知A=0或B=0。

      ②先移項(xiàng),注意移項(xiàng)后要變號(hào),等號(hào)右邊為0。

     、劾谜w思想和換元思想因式分解。

     、茏⒁夥匠谈谋硎痉椒。

      第六環(huán)節(jié),比一比,賽一賽 ,看誰(shuí)最棒:

      1、(4mn3-6m3n)÷(2n2+3m2) 2、[(2a-1)2-(3a-1)2]÷(5a-2)

      3、49x2-25=0 4、(3x-2)2=(1-5x)2

      突破重點(diǎn),鞏固提高.

      第七環(huán)節(jié),探索提高,提升自我:

      1、 已知:| x + y + 1| +| xy - 3 | = 0 求代數(shù)式xy3 + x3y 的值。

      2、把偶數(shù)按從小到大的順序排列,相鄰的兩個(gè)偶數(shù)的平方差(較大的減去較小的)一定是4的倍數(shù)嗎?是否可能有比4大的偶數(shù)因數(shù)?

      說(shuō)明:教師安排這一過(guò)程意圖就是引導(dǎo)學(xué)生進(jìn)行分析討論,鼓勵(lì)學(xué)生勤于思考,各抒己見(jiàn),培養(yǎng)學(xué)生的邏輯思維能力和表達(dá)、交流能力。

      第八環(huán)節(jié), 知識(shí)整理,歸納小結(jié)。

      這一部分可由學(xué)生自行小結(jié),盡可能說(shuō)明本節(jié)課的收獲,教師可適當(dāng)補(bǔ)充。教師安排這一過(guò)程意圖是:由學(xué)生自行小結(jié),點(diǎn)燃學(xué)生主題意識(shí)的再度爆發(fā)。同時(shí),學(xué)生的知識(shí)學(xué)習(xí)得到了自我評(píng)價(jià)和鞏固,成為本節(jié)課的最后一個(gè)亮點(diǎn)。

      第九環(huán)節(jié),作業(yè)布置:

      1、書(shū)本作業(yè)題,作業(yè)本。

      2、興趣題:手工課上,老師又給同學(xué)們發(fā)了3張正方形紙片,3張長(zhǎng)方形紙片,請(qǐng)你將它們拼成一個(gè)長(zhǎng)方形,并運(yùn)用面積之間的關(guān)系,將多項(xiàng)式2a2+3ab+b2 因式分解

      教師意圖:讓學(xué)生鞏固所學(xué)內(nèi)容并進(jìn)行自我檢測(cè)與評(píng)價(jià),考慮到學(xué)生基礎(chǔ)的差異性,作業(yè)進(jìn)行分層次要求。興趣題可滿足學(xué)有余力的學(xué)生的求知欲望,提高他們對(duì)因式分解的技能和技巧。

    【數(shù)學(xué)教案:《因式分解》】相關(guān)文章:

    因式分解數(shù)學(xué)教案參考08-11

    因式分解教案14.3.1因式分解教案03-31

    因式分解教案03-08

    《因式分解》說(shuō)課稿10-03

    因式分解公式06-04

    《因式分解》教學(xué)設(shè)計(jì)04-19

    因式分解教學(xué)反思09-12

    數(shù)學(xué)因式分解教案08-31

    《因式分解》說(shuō)課稿范文10-07