欧美精品手机一级在线播放,中文字幕在线欧美日韩,欧美精品中文字幕亚洲专区,国产免费观看网站

    <mark id="hrvb1"><strong id="hrvb1"></strong></mark>
  • <td id="hrvb1"></td>

    高數(shù)重要知識點總結怎么寫

    時間:2024-07-17 07:20:46 知識點總結 我要投稿
    • 相關推薦

    高數(shù)重要知識點總結怎么寫

      總結是指社會團體、企業(yè)單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規(guī)律性認識的一種書面材料,通過它可以全面地、系統(tǒng)地了解以往的學習和工作情況,快快來寫一份總結吧。那么總結要注意有什么內容呢?下面是小編整理的高數(shù)重要知識點總結怎么寫,僅供參考,大家一起來看看吧。

    高數(shù)重要知識點總結怎么寫

    高數(shù)重要知識點總結怎么寫1

      1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.

      2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).

      3.多項式:幾個單項式的和叫多項式.

      4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。

      通過本章學習,應使學生達到以下學習目標:

      1. 理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。

      2. 理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進行同類項的合并和去括號。在準確判斷、正確合并同類項的`基礎上,進行整式的加減運算。

      3. 理解整式中的字母表示數(shù),整式的加減運算建立在數(shù)的運算基礎上;理解合并同類項、去括號的依據(jù)是分配律;理解數(shù)的運算律和運算性質在整式的加減運算中仍然成立。

      4.能夠分析實際問題中的數(shù)量關系,并用還有字母的式子表示出來。

      在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應用意識。

    高數(shù)重要知識點總結怎么寫2

      1.不等式的定義

      在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數(shù)學符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

      2.比較兩個實數(shù)的大小

      兩個實數(shù)的大小是用實數(shù)的運算性質來定義的,有a-b>0?;a-b=0?;a-b<0?.

      另外,若b>0,則有>1?;=1?;<1?.

      概括為:作差法,作商法,中間量法等.

      3.不等式的性質

      (1)對稱性:a>b?;

      (2)傳遞性:a>b,b>c?;

      (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

      (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

      (5)可乘方:a>b>0?(n∈N,n≥2);

      (6)可開方:a>b>0?(n∈N,n≥2).

      復習指導

      1.“一個技巧”作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

      2.“一種方法”待定系數(shù)法:求代數(shù)式的'范圍時,先用已知的代數(shù)式表示目標式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質求出目標式的范圍.

      3.“兩條常用性質”

      (1)倒數(shù)性質:

     、賏>b,ab>0?<;

     、赼<0

     、踑>b>0,0;

     、0

      (2)若a>b>0,m>0,則

     、僬娣謹(shù)的性質:<;>(b-m>0);

    高數(shù)重要知識點總結怎么寫3

      個人經歷總結:考研數(shù)學如何有效的復習

      要善于改變計劃

      計劃是死的,人是活的。由于當時這樣那樣的原因,我看完第一遍復習全書已經到了十一月初,這時又加入政治和專業(yè)課復習。之前我的美好計劃肯定是實現(xiàn)不了,我就稍稍改變了一下,在進行第二遍復習全書的時候,我只看了知識總結和典型的幾個例題,全書的課后習題我只在暑假做了三章,之后的我一道都沒做(這個不要學我,最后是自己都能做一遍),同時這個時候,我又加入了暑假就買的660題,慚愧!當作是對知識點的熟悉和鞏固,這樣我差不多用了不到20天把知識點看了第二遍,同時基本上完成了660的題目(個人感覺這本書非常好,推薦一下)。

      要有毅力和勇氣

      在做數(shù)學的過程受的打擊是最多的,一定要堅持住。首先,每天都要做一點數(shù)學題,這個東西很忌諱手生和思維的間隔。其次,在遇到困難的時候要堅持住,這個我主要體現(xiàn)在做李永樂經典400題上。我在完成第二遍復習的時候,就著手做400題,總共十套,我給自己訂的計劃是10天完成,我滿懷信心的開始,結果從第一套到最后一套把我打擊的徹徹底底一塌糊涂,平均也就100分,最低的有80多,最好的也就110多,這個時候看到網(wǎng)上的400題各種130+,我直接趨于崩潰。

      但我覺得難能可貴的是要迎難而上,十天把十套題做完了,每天晚上從六點到十一點,我都在做這個,然后總結,消化,吸收。最后,當你遇到困難和挫折的時候一定要保持信心和冷靜的頭腦,并能夠及時采取策略。在十二月份的時候我開始做真題。我總共做了大概十二套的真題,感覺不錯,信心有點膨脹。后來一月份在做合工大5套題的時候又是把我打擊一番,我只做了三套就做不下去了,有嘗試了做以前做過的題還有做錯的和不會的,這時候距離考試只有5、6天了,于是我決定放棄合工大和一切模擬題,把最近的兩年真題在規(guī)定的時間內又重新做了一遍,都能在140以上,信心才慢慢回來。

      數(shù)學題要做不能只是看

      尤其是在做套題的時候。我在做模擬試卷和真題的時候,專門找了一個本子,從十一月中下旬開始雷打不動每天固定三小時,把一份試卷從頭做到尾,大題每一題都認真寫出過程并算出最后結果,期間過程,不管遇到什么不會的,我都不看答案或是去翻書,三個小時結束后也不管自己做的怎么樣立即停筆,然后進行批改分析和總結。我覺的`在沒人監(jiān)督的情況下,通過這種方式對于模擬考場環(huán)境和處理問題是很有好處的。

      考試時要淡定

      在考試的時候,說不緊張那是騙人的,但需要把緊張控制在一定的程度內。我由于第一天英語自我感覺非常不好,導致一夜沒睡著,第二天早上喝了兩瓶紅牛就去考了。非常緊張,第一道題就讓我非常棘手,5分鐘后

      沒有點頭緒,于是放棄,后來概率兩道題也讓我不知所措,過了半個多小時,我還是有三道選擇題沒做。我深呼吸了一下,等了一分多鐘才開始做填空題,好在填空題還是中規(guī)中距的,大題除了二重積分那道比較有新意外,其他的也都是傳統(tǒng)的題目,一路跌跌撞撞,但也沒遇到什么大坎,做完后還剩20分鐘。開始集中解決三道選擇題,我通過各種方法,試湊,舉例,分析,綜合,蒙猜,總算在規(guī)定的時間內做完了,第一道選擇題我是二蒙一,事實證明我是幸運的。

    高數(shù)重要知識點總結怎么寫4

      1、集合的概念

      集合是數(shù)學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

      集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。

      2、元素與集合的關系元素與集合的關系有屬于和不屬于兩種:

      元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

      3、集合中元素的特性

      (1)確定性:設A是一個給定的集合,x是某一具體對象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

      (2)互異性:“集合張的元素必須是互異的`”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。

      (3)無序性:集合與其中元素的排列次序無關,如集合{a,b,c}與集合{c,b,a}是同一個集合。

      4、集合的分類

      集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:

      有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。

      無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

      特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{x?R|+1=0}。

      5、特定的集合的表示

      為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。

      (1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做N。

      (2)非負整數(shù)集內排出0的集合,也稱正整數(shù)集,記做N_或N+。

      (3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。

      (4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。

      (5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。

    高數(shù)重要知識點總結怎么寫5

      數(shù)學單科復習計劃

      考研數(shù)學分數(shù)學一、數(shù)學二、數(shù)學三三種。其中:數(shù)學一是對數(shù)學要求較高的理工類的;數(shù)學二是對于數(shù)學要求要低一些的農、林、地、礦、油等等專業(yè)的;數(shù)學三是針對經濟等方向的.

      試卷滿分為150分,考試時間為180分鐘.

      試卷題型結構

      單選題 8小題,每題4分,共32分

      填空題 6小題,每題4分,共24分

      解答題(包括證明題) 9小題,共94分,其中5個10分,4個11分。

      試題內容

      其中數(shù)一和數(shù)三考試科目:高等數(shù)學、線性代數(shù)、概率論與數(shù)理統(tǒng)計,其中高等教學 56%,線性代數(shù) 22%,概率論與數(shù)理統(tǒng)計 22%。但數(shù)學三屬于經濟類,總體比數(shù)一要簡單一些,還有空間解析幾何、曲線積分、曲面積分等不作要求。 數(shù)學二考高數(shù)和線性代數(shù),不考概率與數(shù)理統(tǒng)計。其中高等教學 78%,線性代數(shù) 22%。

      推薦教材:

      1 、《高等數(shù)學》(上下冊)第五版或第六版,同濟大學應用數(shù)學系,高等教育出版社 。

      2 、《線性代數(shù)》第四版,同濟大學應用數(shù)學系,高等教育出版社

      3 、《概率論與數(shù)理統(tǒng)計》第三版,浙江大學盛驟等,高等教育出版社

      數(shù)學總分150分,所以在考研中起決定作用。

      考研數(shù)學復習計劃

      1、起步階段(到11月)

      了解數(shù)學考研內容、考試形式和試卷結構,對自我進行評測并對測評結果認真分析,找出弱點與不足,制定科學合理的個性化學習計劃,準備資料進入復習狀態(tài)。

      2、基礎階段(.12~6月)

      學習目標:全面整理考研數(shù)學的知識點,掌握基本概念、定理、公式并能進行基本應用,經典教材基礎知識掌握熟練,課后習題能夠獨立解決,基礎試題測試正確率達到90%以上。

      學習形式:參加基礎班視頻教學學習和教師輔導答疑相結合。其中視頻教學80課時,答疑輔導及知識補充約80課時。

      學習時間:從月~6月,約6~7個月時間,每天3~4小時;A較差或要考高分(125分以上)的學員時間最好提前開始復習。

      學習方法:根據(jù)去年考研數(shù)學大綱要求結合教材對應章節(jié)系統(tǒng)復習,打好基礎,特別是對大綱中要求的基本概念、基本理論、基本方法要系統(tǒng)理解和掌握,完成數(shù)學考研備戰(zhàn)的基礎準備。大家在基礎階段花大力氣把基礎夯實是很值得的,并且近幾年的數(shù)學考研試題越來越偏基礎。在這個階段,建議大家分為兩步來復習:

      第一步,教材精學:集中精力把教材好好地梳理,按照大綱要求結合教材相應章節(jié)全面復習,按章節(jié)順序獨立完成教材的練習題,通過練習知識點進行鞏固。不懂一定要隨時提問。建議每天學習新內容前復習前面學過的內容,因為教材的編寫是環(huán)環(huán)相扣,易難遞進的編排,所以我們也要按照規(guī)律來復習,經過必要的重復會起到事半功倍的'效果。這個階段約需要4~5個月的時間。

      第二步,基礎知識鞏固和提高:通過考研基礎試題的練習和測試,對考研的知識點進行鞏固和加深理解,并能進行基本應用。建議大家使用與教材配套的復習指導書或習題集,通過做題鞏固知識。在練習過程中遇上不懂或似懂非懂的題目要認真思考,不要直接看參考答案,應當先溫習教材相關章節(jié)再嘗試解題。按要求完成練習測試后,要留一些時間對教材的內容進行梳理,對重點、難點做好筆記,以便于后面復習把它消化掉。這個階段約需要2個月的時間。

      此階段可以結合同學們自己的實際學習情況,比如有些同學某部分內容不熟悉或沒學過,可以到理學院咨詢相關教師,去隨堂聽課。

      3、強化階段(.7~)

      學習目標:按照考研最新大綱要求,進一步鞏固和強化考研數(shù)學的重點、熱點和難點,從知識結構上進行系統(tǒng)訓練,能夠按照考試要求解題,能夠獨立完成一定難度的試題,要求測試成績正確率達到80%以上。

      學習形式:暑期強化班視頻教學和教師輔導答疑相結合。其中視頻100課時,答疑輔導約60課時。 學習時間:從7月~9月,約3個月時間,每天4小時。

      學習方法:通過對考研數(shù)學輔導材料(考研復習全書)的研讀和試題精解,在鞏固第一階段學習成果的基

      礎上系統(tǒng)掌握知識脈絡,提高解題的速度和正確率。本階段是考研復習的關鍵,大體可以分兩輪學習: ?第一輪:7月到8月,按照20考研最新大綱要求全面掌握考試內容。參加強化班學習,根據(jù)老師課堂講解和講義學習,熟悉考研數(shù)學的重點題型,將知識點系統(tǒng)化和脈絡化。在學習過程中對重點、難點做好記號,適當?shù)淖鲂┕P記,便于下一輪復習。

      第二輪:9月到10月,通過考研輔導資料與專項習題的試題訓練,對考試重點題型和自己薄弱的內容進行強化和提高,并能舉一反三,提高解題的速度和正確率。

      4、提高階段()

      學習目標:通過真題訓練提高知識綜合運用的能力,把握考試難度、解題技巧及命題趨勢,篩理出自己的薄弱環(huán)節(jié)并進行專項突破,測試成績正確率要求達到80%以上。

      學習形式:沖刺串講班視頻教學20課時和真題模擬演練,每星期考一張往年真題,輔導老師收上來,批改后進行講解,輔導講解約30課時。

      學習時間:從11月~12月,約2兩個月,每天3小時。

      學習方法:

      第一步,通過對近幾年的真題全景測試把握考試難度,通過真題剖析洞悉解題技巧及,通過失分題篩理出自己的薄弱環(huán)節(jié)。

      第二步,專項強化彌補自己的薄弱知識點。

      第三步,真題全景訓練和深度剖析:用一個月的時間把近十年真題搞熟搞透。

      第四步,通過真題和模擬題試卷進行高強度解題訓練,全面提高解題的速度和正確率,高度重視做錯的題目。

      5、沖刺階段()

      學習目標:對所學知識系統(tǒng)總結,把握考試熱點重點,調整好狀態(tài)。

      學習形式:參加視頻?及嗪湍M試卷考核,輔導教師講解和答疑。

      學習時間:從12月中旬到考前,約一個月。

      學習方法:這一階段的目標是保住自己在前幾個階段的成果,我們要做到:1、通過對以往學習筆記和所做試題的復習查漏補缺;2、對教材和筆記中的基本概念、基本公式、基本定理加強記憶,尤其是平時不常用的、記憶模糊的公式,經常出錯的要重點記憶;3、進行適量沖刺題訓練,保持做題感覺并調整考試狀態(tài),輕松應考。

      祝成功!

    高數(shù)重要知識點總結怎么寫6

      1.有序數(shù)對:有順序的兩個數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b)

      2.平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標系。

      3.橫軸、縱軸、原點:水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

      4.坐標:對于平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數(shù)a,b分別叫點P的橫坐標和縱坐標。

      5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的.點不在任何一個象限內。

      平面直角坐標系是數(shù)軸由一維到二維的過渡,同時它又是學習函數(shù)的基礎,起到承上啟下的作用。另外,平面直角坐標系將平面內的點與數(shù)結合起來,體現(xiàn)了數(shù)形結合的思想。掌握本節(jié)內容對以后學習和生活有著積極的意義。教師在講授本章內容時應多從實際情形出發(fā),通過對平面上的點的位置確定發(fā)展學生創(chuàng)新能力和應用意識。

    高數(shù)重要知識點總結怎么寫7

      寫在前面:本人理工科學渣一枚,期末基本靠考前突擊,除了專業(yè)課學的還算扎實,像數(shù)學、英語這樣的公共課,常年徘徊在70來分。經過去年大半年的奮戰(zhàn)(5-12月),以初試排名第2,復試后綜合排名第4跨校不跨專業(yè)考研成功。初試分數(shù):數(shù)學146,英語71,政治62,專業(yè)課129,總分408分。拿得出手的,就只有數(shù)學了。所以,就寫一篇關于數(shù)學的策略總結,作為考研道路的結業(yè)報告。一來是為了回饋當初在論壇里得到的各路大神的指點;二來也希望后來者能在這條辛苦的考研路上少走些彎路,考上自己理想中的院校。

      這篇策略總結分三個部分:

      1.復習考研數(shù)學必須避免的錯誤做法;

      2.復習考研數(shù)學可以借鑒的小經驗;

      3.分階段(基礎---強化---沖刺)復習策略。

      那么首先,我們進入第一部分:

      復習考研數(shù)學必須避免的錯誤做法

      1.以眼代手,以看代練。這個問題可能文科生更為普遍一點,簡單的說,就是習慣以看輔導書和視頻的講解和解題過程作為數(shù)學復習的主要手段,自己很少動筆練習。不否認,看書和視頻時有時也能獲得很清晰的”懂了”的感覺,可只要上了考場動筆就會發(fā)現(xiàn),實在做不到啊。因為自己做的時候,計算上會遇到怎樣的阻礙,某些細微之處如何變形處理,不是簡單的看看就能掌握的,所以,數(shù)學必須看練結合,以練習鞏固。

      可能也有人把對著輔導書上的過程邊看邊照著推算當成練習,也常自稱為”今天我做了某書多少頁”,這么做比不練習好,然而還不夠。一道題目在已知思路,方法的情形下,參與某些環(huán)節(jié)的推算畢竟是避實就虛的做法,也并不難,因為我們把最難的思考過程略去了。這些題看過幾周后,單獨擺在紙上,能否立即想出合適的思路,并規(guī)范寫出解答呢?如果不能,這就是你要做的了。把看過的典型題抄在白紙上,間隔一段時間獨立推導演算看看。有些學霸直接采取的是先獨立做題,在看講解的方法,這當然更好,前提是需要更好的實力?傊,獨立做題的環(huán)節(jié)必須要有,視個人情況選擇前置或后置。

      對于學渣而言,這就有點像學寫毛筆字,剛開始肯定是沒有自信直接揮毫的,所以只能臨摹,對于數(shù)學,就是邊看過程邊跟著推導;然而想學會寫毛筆字,最終一定是要丟掉臨摹貼,在紙上獨立寫,對于數(shù)學,就是完整的獨立推算。

      2.想當然,粗心大意。粗心像是一種無藥可救的病,從小學那會我們就開始丟符號看錯數(shù)了,可見歷史悠久。其實直到本次考研,我數(shù)學上丟的4分也源自于看見一道選擇題想當然認為是做過的原題,直接選了印象中的答案。其實只要動筆算下兩分鐘就能發(fā)現(xiàn)實際該選哪項了?佳忻}人也時常會利用想當然的人性弱點去命制一些客觀題。所以,數(shù)學復習當中的想當然是絕對要不得的,無論你看一個結論多么理所當然,都盡量動筆推一推。且平常要養(yǎng)成良好的草稿習慣,最基本的要求:回頭檢查時,要能看的懂自己的過程。據(jù)我所知很多人的草稿回頭自己都找不著某步結果在哪。不求像藝術品,只求可回溯?酥葡氘斎缓土己玫牟莞辶晳T在一定程度上可以減少粗心丟分。

      3.被學霸和曬進度狂魔帶亂節(jié)奏。常逛論壇的人都知道,在各個時段總有人會曬書已看幾遍,題做了多少,模擬多少分?鋸埖氖牵胰ツ5月剛開始復習的時候,同校某研友就號稱“全書已看兩遍,真題兩遍,接下來不知該做什么了”,這夠牛吧。最后此人考了122,顯然不是一個閃瞎人眼的分數(shù)。記得壇子里有位前輩說過,出來曬說明浮躁,真的大牛只會扎實復習,不會出來說自己復習的多好的,最后的分數(shù)是他們的表達方式。

      給這些進度狂魔帶亂會有什么壞處呢?實例說明:我和同宿舍好友老劉一起復習,五月開始都不能算早,進度相似,基礎相似,到了7月20號左右我們兩的第一輪(但我們的第一輪工作做的很扎實,不只是看教材之類,這點后面說)都只推到了線性代數(shù)的一半,這時_聽說廣大進度強人二輪高數(shù)都結束了,立即急了。于是開始折騰各種速成招數(shù),竟然在8月底

      追平了那些人的進度,也完成了所謂二輪復習。而此時我按照既定剛剛推完一輪,二輪高數(shù)推到積分。說實話,我真不知道追求8月底看完,這9月開始的第三輪會是個什么目標,用三個半月去做試卷加沖刺顯然是沒有必要的事情。

      說結果把:10月中,我完成二輪,此時進度貌似已落后他1個半月之多,但前面做的扎實,接下來就是沖刺歸納階段,近60天時間做了35份各風格試卷,輔以總結,梳理從前錯題;而_直到11月還在忙他的第三輪,并且暴露出了很多地方理解不透,經;仡^補,但知識不成體系支離破碎并不是那么好補的。最終他考了117,今年需要二戰(zhàn)。沒有消費別人痛苦的意思,事實上作為好友,我們在考后就成敗做了很坦白的分析,這也是他想說的話:進度控制是要有的,別慢的離譜。但是!千萬別跟著別人的節(jié)奏改變自己計劃。也祝我的好友老劉今年二戰(zhàn)順利!

      4.囤積各種資料,每樣淺嘗輒止。每年在論壇里都能看見大量關于考研數(shù)學輔導書哪家強的討論,主要集中在文燈指南,雙李全書(現(xiàn)在變成單李了),李王全書,張宇,老湯,楊超,毛綱源等等。在去年開始復習之初我也困惑不已,不知該如何選擇,后來經學長指點才明白,選哪本并不需要糾結,更不需要買很多本堆起來看。輔導書的作用,在于對大綱知識作出歸納講解,并提供足夠的題型,讓人熟悉各種考點與相關解決方法。就達成這一作用而言,幾本主流的書都能達成目標,選定就不需要中途換書了。

      去年從獅子數(shù)學團隊的學長那里獲得了一個很實用的推薦方案,分享給大家,就是一主一輔制。具體講,就是選兩本教輔,一本為主用教輔,看書上的講解總結,做書上的例題并自己適當筆記,一本作為輔用教輔,對于自己掌握一般或者有疑難的章節(jié),參考這本的.講解與歸納;同時,對于考的比較多的章節(jié)或者覺得練習不夠的章節(jié),可以做輔用這本的例題,以見識更多的題型。注意兩本不是平行的關系,如果每章都把兩本用完,需要花的時間太多了,對于大部分人都不現(xiàn)實。

      推薦幾個組合,大家可以自行選用:

      高數(shù):單李全書高數(shù)部分(單李也好,雙李也好,還是經典的延續(xù),優(yōu)點是歸納簡要,題型全,缺點是體系感稍弱,且解法不夠靈活)+張宇18講(優(yōu)點是解題靈活,重視思維訓練,缺點是題型不夠全,難度稍高),所以這兩本是個完美的主輔搭配。類似:文燈指南+張宇18講,李王全書+張宇18講。

      線代:單李全書+永樂線代講義(或者單用永樂線代講義即可)。類似:文燈指南線代部分+永樂線代講義等。

      概率:姚孟臣概率論與數(shù)理統(tǒng)計講義(基礎篇+提高篇)。

      線代和概率的復習量并不是太大,所以時間緊的話一本就可以了,高數(shù)我覺得還是需要兩本搭配的。

      我個人用的是毛綱源的解題方法與技巧歸納系列搭配張宇18講,永樂線代講義,姚孟臣概率,之所以并沒有推薦自己用的這個組合,是因為毛綱源的這套書優(yōu)缺點都很明顯,優(yōu)點是題型全面,解題技巧總結極為細致,缺點是重點不突出,沒有體系感。這本書沒有一定駕馭能力的話是把雙刃劍,沒有傳統(tǒng)的全書指南那么穩(wěn)當,數(shù)學基礎清晰的同學可以使用。 以上僅是略作推薦,沒說的不代表不好,不能用。想表達的意思是一主一輔,選好以后就不要中途再換書了。有個有名的梗是考研同學最熟悉的英語單詞是abandon,因為換了幾本詞匯書后就前幾個單詞記得最清楚。數(shù)學也是一樣的道理,換來換去每本書都沒有發(fā)揮出功用。當你覺得書不好時,有99%的可能是自己沒有靜下心學下去。輔導書只是個載體,既要從輔導書上學解題方法,更要從做題目當中訓練提升思維能力,最終形成自己的解題思路與方法。仍用書法的例子為例,一開始臨摹,然后自己寫,此時寫的仍然是某人的字體,而真正學會是開始形成自己的風格。數(shù)學也是一樣,一開始對特定的題型用學來的方法,思維提升后就可以從本質出發(fā)選擇合適的方法,對于沒做過的新題型也能游刃有余。

      5.迷信題海戰(zhàn)術,做題多,總結少。其實題海戰(zhàn)術是很有用的,但考研畢竟是四門考試構成的整體,如果一門課滿分,另幾門很低甚至不過線,那也玩不轉。所以應該追求的是做適當?shù)念},達到最大的效果,這就需要我們利用好做題的過程。做題后對完答案改下錯誤,這樣只是利用了這題30%的價值;用錯題本做錯題歸集,時;仡檶徱曞e誤并重做,這樣就利用了70%的價值;如果學會給錯題和不夠巧妙的解題過程開藥方,這樣就利用了題目99%的價值了。關于開藥方這次,我借鑒于壇子上一位學長,個人覺得得到這樣的分數(shù),最關鍵的就是這個”開藥方”,這一點在可以借鑒的小經驗里談。

      6.考前套卷模擬做的太少。這個環(huán)節(jié)也有不少同學忽視,有人總覺得自己題目做了很多,且正確率很高了,是否按實考時間做套卷模擬都沒有什么大不了。這種想法是有點危險的。當你按照章節(jié)刷題的時候,時間分配和節(jié)奏把握的問題是不存在的,而在實考中可能會遇到“某題卡殼,該思考多久?”客觀題比預想難,花的時間有點多,該如何平復心情?“這些都需要通過準實戰(zhàn)的環(huán)境去磨練。所以,我傾向于建議大家用難一些的卷子而不是真題去模擬,這樣可以學會最壞情形下的應對技巧,例如后面要說到的張宇8+4,合工大超越與共創(chuàng)模擬。 復習考研數(shù)學可以借鑒的小經驗

      1.輪次重疊法。復習之路漫長,不少同學會有這樣的感受,等到第二輪開始看高數(shù)時,中間間隔了復習線代概率的一段時間,都忘得差不多了。對于這樣的問題,可以采取輪次重疊法,即:一輪高數(shù)結束時,開始復習線代概率,同時對高數(shù)復習過的東西做一些回顧,并適當練習,相當于為二輪高數(shù)預熱。注意此時的時間分配,仍以線代概率一輪為主,而高數(shù)的預熱與回顧只是為了記憶不冷卻,達到目標就行,不必真的完全展開高數(shù)二輪。

      2.開“藥方”法。此法是從論壇上一位學長的考研經驗貼中學來,他數(shù)一考了147分,也在這里感謝這位學長在帖子里答復我的提問。所謂開藥方法,比錯題回顧更高一層次。最低境界的做題,就是做完對答案;稍微好一點,搜集錯題,時常回顧;而開藥方是更積極的做法。具體操作如下:例如一個高數(shù)證明,自己做的時候沒有搞定,對答案做完后,請思考自己做的時候是哪幾步沒有突破。例如,對左邊式子的放縮沒有想到,利用算術平均大于幾何平均放縮不熟練。Ok,標注在題目旁邊,同時做下標記,摘進做題日志(這個日志是我自己的發(fā)明,可以省去把錯題抄下來的繁雜功夫,只需要標注是哪一天,哪本書哪頁的錯題即可)。又比如一道線代題,自己已經用方程組形式做且做對,但也可以用向量形式做,且更簡單,那么也做出標注:向量形式更簡單,沒想到原因:對各方程組的向量轉化運用不靈活,諸如此類。這樣做有兩個好處:做完題后還多了一次積極審視思考,使得收獲更大;

      2.過段時間回頭過錯題時也能檢查下當時的不足,以及現(xiàn)在解決了沒有。如果不這樣做相信時間久了當時為何沒做出或是用的什么方法都忘了。

      3.套卷編組循環(huán)訓練法。這招也是從論壇學長處學來,專用于第三輪。前面說過考前需要做一定量的模擬卷以磨礪狀態(tài),但在選擇試卷中又令人糾結了,選誰的模擬呢?選難的,還是簡單一點的?只做某個人的會不會風格太單一呢?套卷編組解決了這一難題。舉個例子,我們打算在考前做30多套試卷,選中的模擬試卷是400題,合工大,張宇8套,那么我們就可以把他混合編組,例如第一組:2套400題,2套合工大,2套張宇,這樣可以保證在一個訓練周期內體驗不同風格的題目,增強應對各種場景的能力。一組完成后,不是立即去做下一組,而是結合這一組的模擬情況做一個小總結,看看自己暴露出了哪些不足,結合過去的錯題,筆記及時查漏補缺,然后再進入下一組。這樣4-6組做下來,基本可以做到胸有成竹的上考場了。

      分階段復習策略

      一、基礎階段

      很多人習慣于在攻略中找明確的時間段,這一點我覺得很奇怪。每個人考研開始著手的時間不同,因此就有了不同的時段和節(jié)奏,如果對一個6月才開始復習的同學說7月你必須完成

      基礎段,簡直是開玩笑;A段我個人覺得需要2-3個月時間,如果有的同學第一階段只是過一些基礎,那么可能快一點,但二輪要花的時間必然多一點;另一些同學第一輪就開始有些強度訓練,那么第一輪時間必然花的多點,但第二輪就輕松些,總體時間仍然是差不多的?傊,因人因策略而異,我本人采取的是較有強度的第一輪復習,從5月初一直持續(xù)到8月中旬。在論壇有些言論的看法來說,算是比較慢的了,但又何妨?節(jié)奏裝在自己心里。 基礎階段面臨的第一個問題是,是否該從看教材開始復習?以前這并不是一個問題,當然要看了。但現(xiàn)在,隨著很多新派考研“名師”的崛起,越來越多言論鼓吹不看教材直接用輔導書或是上輔導班。我個人覺得,如果有下面兩種情形,你可以不看教材:

      1.大學期間數(shù)學課學的很不錯,門門都在85以上且還沒遺忘的;

      2.準備開始考研時間已經是9月初的。

      前一種是用不著,后一種是當真沒時間看教材了。但這兩種情形遇到概念困惑時偶爾也需要翻一翻教材。

      持不看教材言論者常常說,書上有的知識輔導書上不是都很全么,還更簡練,更有針對性。打個比方,書上的概念像是新鮮蔬菜,而輔導書上是脫水方便蔬菜,當然成分是一樣的,但吸收起來,新鮮的顯然有更好的口感,對人更有利。對某個具體概念,教材往往是從實際背景引入,推導和得出過程,以及簡單應用齊備的,而教輔就只是簡單推導和結論。如果沒有過教材中打下的底子,往往會在復習中遇到一些“理解不能”的情形,且對一些所謂靈活題目不知所措,其實那不過是從最基礎的知識中引申出來的。

      客觀的講,如果時間確實很緊,線代和概率論的教材復習是可以跳過的,因為這兩門考的體量小,教輔的總結歸納確實比較趨近于教材,如果時間夠還是應該看看。高數(shù)仍然推薦每個人仔細過一遍教材。

      過教材當然不是像讀小說一樣逐字逐句的看過去。在這個過程中,首先手邊應該準備一份大綱,或者用教輔的目錄對應也成,把那些不考的過濾掉?吹倪^程中,重點關注那些大綱中要求概念、定義、定理的整個引入與展開過程,并認真從本質理解。注意,不是只追求看過,而是弄懂怎么回事。這就是所謂的過概念關;而在過教材同時該做的就是勤練計算,尤其是像積分這樣需要一定量積累的計算,這就是所謂的過計算關。如果復習到二三輪發(fā)現(xiàn)計算還不過關,麻煩會很大。

      有的同學數(shù)學底子較差,其實當初我自己底子也不算好,所以未必能獨立透徹搞懂所有環(huán)節(jié)。除了通過練習去加深理解之外,也可以通過一些較好的視頻課程去輔助理解。在這一階段,我參考了獅子數(shù)學的高數(shù)、線代、概率的一季思維課程,李永樂線代課程。其中,永樂線代之經典不必多言,獅子數(shù)學是市面上很少見會重視數(shù)學思維養(yǎng)成的課程,對于缺乏數(shù)學思維能力的人幫助較大。例如同為線代部分,永樂大神的課基本上把所有可能的考點都做了透徹的分析與解法歸納,非常實用;而獅子的課程從思維層面著手,結合考研數(shù)學的知識點,讓人學完很清楚線性代數(shù)是什么,用來做什么,高數(shù)和概率也有很類似的特點。例如通過獅子的課,對于微積分是研究動態(tài)趨勢的學科,而微分旨在通過動態(tài)趨近研究變化,而積分通過細分,累加,再讓劃分動態(tài)趨于0完成近似,兩者通過微積分基本定理有機統(tǒng)一這些相關講解,會把學科的框架構建的非常清晰。

      除此之外,我還在第一輪做了基礎過關660題這本書,這也是我為什么會花了這么長的時間在第一輪的重要原因。這本很經典的書難度較高,但對于概念與計算能力強化作用明顯。對于不想第一輪花太多時間的同學,可以考慮第二輪去做。

      另外,教材上的一些例題、習題我也獨立做了。大家可以通過百度去搜關于考研教材習題必做題的推薦,會有一些題號列出,畢竟全部做完是很難實現(xiàn)的。

      二、強化階段

      我是八月下旬開始強化階段的復習的。用過的資料有:真題,毛綱源常考歸納,張宇18講,永樂線代講義,獅子數(shù)學二季課程。

      強化階段最為重要的資料就是真題,不是哪一本教輔。真題市面有很多種版本,例如武忠祥的歷年真題分類和張宇的真題大全解,這兩個是從1987年一直到目前的全收錄,還有一些是近十年或十五年的。我選用的是張宇的真題大全解,這本書去年應該是初版,答案有一些錯誤,但總體用起來還是沒問題的,介意的同學也可以考慮武忠祥那本。從87年到現(xiàn)在的真題聽起來很多,其實每年20來道題,總和也不過600來道,比大多數(shù)習題集要少,且多數(shù)考研題的難度并不是特別高,做一遍花的時間并不很多。

      我是邊分章節(jié)做真題,邊看教輔和視頻課程的。這樣做完題,看書上和課程中那些歸納,很容易了解考察的重點和出題方式。張宇的18講有一些在真題基礎之上的前沿展望,這一點做完真題再看就能感受的很明顯,而獅子數(shù)學的課程有著很好的解題者視角,也就是說獅子講的時候設想自己和我們一樣是一個解題者,該如何調用思維和已知方法去創(chuàng)造條件,解決問題。這一點也是讓人受益良多的。毛綱源的書前面已經說過,雙刃劍,對題型的歸納非常全面,甚至過于全面,有些歸納細的過了頭。

      在強化階段,我真題做了三遍,同時相關的教輔,課程重點題也隨之總結歸納了幾遍。有人覺得真題怎么會用得著做三遍,其實每做一遍的側重是不一樣的。第一遍做的時候可能不會有很多關于出題意圖本身的思考,只是訓練解題能力;第二遍就開始察覺自己的薄弱,在題目中選擇更好的方法等等;第三遍就開始與出題老師有所共鳴,開始明白某些選項或是干擾設置的真意。

      總之,強化階段我采用的是以三輪真題訓練,輔以教輔、課程的方式,并且在10月中旬通過第二遍做660回顧了一次概念。最后到了什么程度呢?看見任何一道題,我基本能反映過來某年考過相似的題,背后的出題邏輯是什么,用哪種方法最迅速。另外,值得強調的是,在這一階段,前面所說“開藥方”的招數(shù),也貫穿始終的在用著。10月中旬,我正式完成第二輪,進入沖刺階段。

      三、沖刺階段

      沖刺階段的目的很簡單,就是磨礪實考狀態(tài),查漏補缺。這一階段不少同學需要給專業(yè)課和政治英語更多的時間,所以數(shù)學所占時間必須減少。如果你前面兩輪做的踏實,這一輪確實花不了多少時間,只要保證訓練量足夠,手不生下來即可。

      沖刺階段一般有個40天就夠了,如果有60天就太理想了。方法就是前面所說的套卷編組訓練,輔以不斷的錯題檢閱,查漏補缺。

      對于套卷標的略作推薦:

      合工大模擬五套卷。這個名氣已經很大了,分超越版和共創(chuàng)版,超越略難些,共創(chuàng)更類似真題風格,每年11月中下旬出。獅子數(shù)學課程中有關于合工大的配套講解視頻,并結合著有些歸納。

      張宇8+4。我不知道其他人做這套試卷感覺如何,反正我覺得還是頗有難度的,有幾份模擬時只做了120多一點。分數(shù)不必太在意,這套就是那種可以“模擬最壞情境應對”的試卷。 全真模擬400題。400題也是比較難的,主要體現(xiàn)在綜合程度和計算量較大,每個題目基本都涉及三個以上知識點,且算起來步驟很多。這也是對解題訓練幫助很大的一套,400題中的每套我都做了兩遍,當然第二遍花不了很多時間了。

      說句題外話,越臨近考試,心態(tài)和飲食健康之類的越位重要,至少每天要有點戶外運動或散步的時間,不要讓自己變成壓過頭的彈簧。

      理科生文筆還是很無力,有些話明明很簡短可以說好,還是說了一大堆,很感謝大家能讀到這里。如果大家對數(shù)學復習策略有什么疑問,也可以在帖子后發(fā)問,我每周都會回來看看,如果能幫到大家,我會很欣慰。祝大家考研順利!

    高數(shù)重要知識點總結怎么寫8

      高等數(shù)學是考研數(shù)學的重中之重,所占分值較大,需要復習的內容也比較多。主要包括8方面內容。

      1、函數(shù)、極限與連續(xù)。主要考查分段函數(shù)極限或已知極限確定原式中的常數(shù);討論函數(shù)連續(xù)性和判斷間斷點類型;無窮小階的比較;討論連續(xù)函數(shù)在給定區(qū)間上零點的個數(shù)或確定方程在給定區(qū)間上有無實根。

      2、一元函數(shù)微分學。主要考查導數(shù)與微分的求解;隱函數(shù)求導;分段函數(shù)和絕對值函數(shù)可導性;洛比達法則求不定式極限;函數(shù)極值;方程的根;證明函數(shù)不等式;羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及輔助函數(shù)的構造;最大值、最小值在物理、經濟等方面實際應用;用導數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。

      3、一元函數(shù)積分學。主要考查不定積分、定積分及廣義積分的計算;變上限積分的求導、極限等;積分中值定理和積分性質的證明題;定積分的應用,如計算旋轉面面積、旋轉體體積、變力作功等。

      4、向量代數(shù)和空間解析幾何。主要考查求向量的數(shù)量積、向量積及混合積;求直線方程和平面方程;平面與直線間關系及夾角的判定;旋轉面方程。

      5、多元函數(shù)微分學。主要考查偏導數(shù)存在、可微、連續(xù)的判斷;多元函數(shù)和隱函數(shù)的一階、二階偏導數(shù);二元、三元函數(shù)的方向導數(shù)和梯度;曲面和空間曲線的切平面和法線;多元函數(shù)極值或條件極值在幾何、物理與經濟上的應用;二元連續(xù)函數(shù)在有界平面區(qū)域上的最大值和最小值。

      6、多元函數(shù)的積分學。這部分是數(shù)學一的內容,主要包括二、三重積分在各種坐標下的計算,累次積分交換次序;第一型曲線和曲面積分計算;第二型(對坐標)曲線積分計算、格林公式、斯托克斯公式;第二型(對坐標)曲面積分計算、高斯公式;梯度、散度、旋度的綜合計算;重積分和線面積分應用;求面積,體積,重量,重心,引力,變力作功等。

      7、無窮級數(shù)。主要考查級數(shù)的收斂、發(fā)散、絕對收斂和條件收斂;冪級數(shù)的收斂半徑和收斂域;冪級數(shù)的和函數(shù)或數(shù)項級數(shù)的和;函數(shù)展開為冪級數(shù)(包括寫出收斂域)或傅立葉級數(shù);由傅立葉級數(shù)確定其在某點的和(通常要用狄里克雷定理)。

      8、微分方程,主要考查一階微分方程的通解或特解;可降階方程;線性常系數(shù)齊次和非齊次方程的特解或通解;微分方程的建立與求解。

      除了以上分章節(jié)的考查重點,還有跨章節(jié)乃至跨科目的綜合考查題,近幾年出現(xiàn)的有:級數(shù)與積分的綜合題;微積分與微分方程的綜合題;求極限的綜合題;空間解析幾何與多元函數(shù)微分的綜合題;線性代數(shù)與空間解析幾何的綜合題等。線性代數(shù)的重要概念包括以下內容:代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(矩陣、向量組),線性組合與線性表出,線性相關與線性無關,極大線性無關組,基礎解系與通解,解的結構與解空間,特征值與特征向量,相似與相似對角化,二次型的標準形與規(guī)范形,正定,合同變換與合同矩陣。

      線性代數(shù)的內容縱橫交錯,環(huán)環(huán)相扣,知識點之間相互滲透很深,因此不僅出題角度多,而且解題方法也是靈活多變,需要在夯實基礎的前提下大量練習,揣摩思路。

      概率論與數(shù)理統(tǒng)計是考研數(shù)學中比較難的部分,近幾年這部分試題得分率普遍較低。與微積分和線性代數(shù)不同的是,概率論與數(shù)理統(tǒng)計并不強調解題方法,也很少涉及解題技巧,而非常強調對基本概念、定理、公式的深入理解。其基本知識要點如下:

      1、隨機事件和概率,包括樣本空間與隨機事件;概率的定義與性質(含古典概型、幾何概型、加法公式);條件概率與概率的乘法公式;事件之間的關系與運算(含事件的獨立性);全概公式與貝葉斯公式;伯努利概型。

      2、隨機變量及其概率分布,包括隨機變量的'概念及分類;離散型隨機變量概率分布及其性質;連續(xù)型隨機變量概率密度及其性質;隨機變量分布函數(shù)及其性質;常見分布;隨機變量函數(shù)的分布。

      3、二維隨機變量及其概率分布,包括多維隨機變量的概念及分類;二維離散型隨機變量聯(lián)合概率分布及其性質;二維連續(xù)型隨機變量聯(lián)合概率密度及其性質;二維隨機變量聯(lián)合分布函數(shù)及其性質;二維隨機變量的邊緣分布和條件分布;隨機變量的獨立性;兩個隨機變量的簡單函數(shù)的分布。

      4、隨機變量的數(shù)字特征,隨機變量的數(shù)字期望的概念與性質;隨機變量的方差的概念與性質;常見分布的數(shù)字期望與方差;隨機變量矩、協(xié)方差和相關系數(shù)。

      5、大數(shù)定律和中心極限定理,以及切比雪夫不等式。

      6、數(shù)理統(tǒng)計基本概念,包括總體與樣本;樣本函數(shù)與統(tǒng)計量;樣本分布函數(shù)和樣本矩。

      7、參數(shù)估計,包括點估計;估計量的優(yōu)良性;區(qū)間估計。

      8、假設檢驗,包括假設檢驗的基本概念;單正態(tài)總體和雙正態(tài)總體的均值和方差的假設檢驗。最后,希望廣大考生能夠復習順利,摘得高分。

    高數(shù)重要知識點總結怎么寫9

      1.全面調查:考察全體對象的調查方式叫做全面調查。

      2.抽樣調查:調查部分數(shù)據(jù),根據(jù)部分來估計總體的調查方式稱為抽樣調查。

      3.總體:要考察的全體對象稱為總體。

      4.個體:組成總體的每一個考察對象稱為個體。

      5.樣本:被抽取的'所有個體組成一個樣本。

      6.樣本容量:樣本中個體的數(shù)目稱為樣本容量。

      7.頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個數(shù)為該組的頻數(shù)。

      8.頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。

      9.組數(shù)和組距:在統(tǒng)計數(shù)據(jù)時,把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個數(shù)稱為組數(shù),每一組兩個端點的差叫做組距。

      本章要求通過實際參與收集、整理、描述和分析數(shù)據(jù)的活動,經歷統(tǒng)計的一般過程,感受統(tǒng)計在生活和生產中的作用,增強學習統(tǒng)計的興趣,初步建立統(tǒng)計的觀念,培養(yǎng)重視調查研究的良好習慣和科學態(tài)度。

    【高數(shù)重要知識點總結怎么寫】相關文章:

    高數(shù)重要知識點總結怎么寫12-26

    數(shù)的整除知識點總結07-12

    高1數(shù)學知識點總結03-28

    高中化學重要知識點總結06-11

    高三物理的重要知識點總結03-30

    高中化學重要知識點總結01-31

    數(shù)學有理數(shù)知識點總結07-13

    數(shù)的整除知識點總結集錦08-05

    高數(shù)單調性優(yōu)秀教案08-24