欧美精品手机一级在线播放,中文字幕在线欧美日韩,欧美精品中文字幕亚洲专区,国产免费观看网站

    <mark id="hrvb1"><strong id="hrvb1"></strong></mark>
  • <td id="hrvb1"></td>

    初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié)

    時(shí)間:2025-06-23 10:16:38 賽賽 知識(shí)點(diǎn)總結(jié) 我要投稿
    • 相關(guān)推薦

    初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié)

      總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗(yàn)方法以及結(jié)論的書(shū)面材料,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,不如立即行動(dòng)起來(lái)寫(xiě)一份總結(jié)吧?偨Y(jié)怎么寫(xiě)才是正確的呢?以下是小編收集整理的初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。

    初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié)

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 1

      一、基本知識(shí)

      一、數(shù)與代數(shù)

      A、數(shù)與式:

      1、有理數(shù):

     、僬麛(shù)→正整數(shù),0,負(fù)整數(shù);

     、诜?jǐn)?shù)→正分?jǐn)?shù),負(fù)分?jǐn)?shù)

      數(shù)軸:

     、佼(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。

     、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

      ③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

     、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

      絕對(duì)值:

     、僭跀(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。

     、谡龜(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0、兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。

      有理數(shù)的運(yùn)算:帶上符號(hào)進(jìn)行正常運(yùn)算。

      加法:

     、偻(hào)相加,取相同的符號(hào),把絕對(duì)值相加。

     、诋愄(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

      ③一個(gè)數(shù)與0相加不變。

      減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

      乘法:

      ①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。

     、谌魏螖(shù)與0相乘得0、

      ③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。

      除法:

     、俪砸粋(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。

     、0不能作除數(shù)。

      乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

      混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。

      2、實(shí)數(shù)

      無(wú)理數(shù)

      無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù),例如:π=…

      平方根:

     、偃绻粋(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。

     、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。

     、垡粋(gè)正數(shù)有2個(gè)平方根;0的平方根為0;負(fù)數(shù)沒(méi)有平方根。

     、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。

      立方根:

     、偃绻粋(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。

     、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

     、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。

      實(shí)數(shù):

     、賹(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。

     、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣;

     、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

      3、代數(shù)式

      代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

      合并同類項(xiàng):

     、偎帜赶嗤,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng);②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。

     、墼诤喜⑼愴(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

      4、整式與分式

      整式:

     、贁(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

     、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。

     、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。

      整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。

      冪的運(yùn)算:

      A^M+A^N=A^(M+N)

     。ˋ^M)^N=A^(MN

     。ˋ/B)^N=A^N/B^N

      除法一樣。

      整式的乘法:

     、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

      ②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

     、鄱囗(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

      公式兩條:平方差公式:A^2—B^2=(A+B)(A—B);

      完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、

      整式的除法:

     、賳雾(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

      ②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

      分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

      方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

      分式:

     、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0、

     、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

      分式的運(yùn)算:

      乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

      除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

      加減法:

     、偻帜阜质较嗉訙p,分母不變,把分子相加減。

     、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。

      分式方程:

     、俜帜钢泻形粗獢(shù)的方程叫分式方程。

     、谑狗匠痰姆帜笧0的解稱為原方程的增根。

      B、方程與不等式

      1、方程與方程組

      一元一次方程:

     、僭谝粋(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

     、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

      解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1、

      二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的.方程叫做二元一次方程。

      二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

      適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

      二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。

      解二元一次方程組的方法:代入消元法;加減消元法。

      一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程:ax^2+bx+c=0;

      1)一元二次方程的二次函數(shù)的關(guān)系

      大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y=0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖像與X軸的交點(diǎn)。也就是該方程的解了

      2)一元二次方程的解法

      大家知道,二次函數(shù)有頂點(diǎn)式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解

      (1)配方法

      利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_(kāi)平方法去求出解

     。2)分解因式法

      提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解

     。3)公式法

      這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a

      3)解一元二次方程的步驟:

     。1)配方法的步驟:

      先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式

     。2)分解因式法的步驟:

      把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

     。3)公式法

      就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c

      4)韋達(dá)定理

      利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a

      也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

      5)一元二次方程根的情況

      利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:

      I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;

      II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

      III當(dāng)△B,則A+C>B+C;

      在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;

      例如:如果A>B,則A—C>B—C;

      在不等式中,如果乘以同一個(gè)正數(shù),不等式符號(hào)不改向;

      例如:如果A>B,則A*C>B*C(C>0);

      在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;

      例如:如果A>B,則A*C

      如果不等式乘以0,那么不等號(hào)改為等號(hào);

      所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

      3、函數(shù)

      變量:因變量Y,自變量X。

      在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

      一次函數(shù):

     、偃魞蓚(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

     、诋(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。

      一次函數(shù)的圖像:

      ①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖像。

     、谡壤瘮(shù)Y=KX的圖像是經(jīng)過(guò)原點(diǎn)的一條直線。

     、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O時(shí),則經(jīng)234象限;

      當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;

      當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;

      當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。

     、墚(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。

      二空間與圖形

      A、圖形的認(rèn)識(shí)

      1、點(diǎn),線,面

      點(diǎn),線,面:

     、賵D形是由點(diǎn),線,面構(gòu)成的。

     、诿媾c面相交得線,線與線相交得點(diǎn)。

     、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

      展開(kāi)與折疊:

     、僭诶庵,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。

     、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

      截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

      視圖:主視圖,左視圖,俯視圖。

      多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

      弧、扇形:

     、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

      ②圓可以分割成若干個(gè)扇形。

      2、角

      線:

     、倬段有兩個(gè)端點(diǎn)。

      ②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。

      ③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。

     、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線。

      比較長(zhǎng)短:

     、賰牲c(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間直線最短。

     、趦牲c(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。

      角的度量與表示:

     、俳怯蓛蓷l具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

     、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

      角的比較:

     、俳且部梢钥闯墒怯梢粭l射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。

     、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角,180、始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角,360、

      ③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

      平行:

     、偻黄矫鎯(nèi),不相交的兩條直線叫做平行線。

     、诮(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。

      ③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

      垂直:

      ①如果兩條直線相交成直角,那么這兩條直線互相垂直。

     、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。

     、燮矫鎯(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

      垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

      垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。

      垂直平分線定理:

      性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;

      判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上;

      角平分線:把一個(gè)角平分的射線叫該角的角平分線。

      定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的集合。

      性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等;

      判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上;

      正方形:一組鄰邊相等的矩形是正方形

      性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

      判定:

      1、對(duì)角線相等的菱形

      2、鄰邊相等的矩形

      二、基本定理

      1、過(guò)兩點(diǎn)有且只有一條直線

      2、兩點(diǎn)之間線段最短

      3、同角或等角的補(bǔ)角相等——補(bǔ)角=180—角度。

      4、同角或等角的余角相等——余角=90—角度。

      5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直

      6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

      7、平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行

      8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

      9、同位角相等,兩直線平行

      10、內(nèi)錯(cuò)角相等,兩直線平行

      11、同旁內(nèi)角互補(bǔ),兩直線平行

      12、兩直線平行,同位角相等

      13、兩直線平行,內(nèi)錯(cuò)角相等

      14、兩直線平行,同旁內(nèi)角互補(bǔ)

      15、定理:三角形兩邊的和大于第三邊

      16、推論:三角形兩邊的差小于第三邊

      17、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°

      18、推論1:直角三角形的兩個(gè)銳角互余

      19、推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

      20、推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

      21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

      22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

      23、角邊角公理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

      24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

      25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

      26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

      27、定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

      28、定理2:到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

      29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

      30、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊

      31、推論2:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

      32、推論3:等邊三角形的各角都相等,并且每一個(gè)角都等于60°

      33、等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

      34、等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

      35、推論1:三個(gè)角都相等的三角形是等邊三角形

      36、推論:有一個(gè)角等于60°的等腰三角形是等邊三角形

      37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

      38、直角三角形斜邊上的中線等于斜邊上的一半

      39、定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

      40、逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

      41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

      42、定理1:關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

      43、定理:如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

      44、定理3:兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

      45、逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

      46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

      47、勾股定理的逆定理:如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

      48、定理:四邊形的內(nèi)角和等于360°

      49、四邊形的外角和等于360°

      50、多邊形內(nèi)角和定理:n邊形的內(nèi)角的和等于(n—2)×180°

      51、推論:任意多邊的外角和等于360°

      52、平行四邊形性質(zhì)定理1:平行四邊形的對(duì)角相等

      53、平行四邊形性質(zhì)定理2:行四邊形的對(duì)邊相等

      54、推論:夾在兩條平行線間的平行線段相等

      55、平行四邊形性質(zhì)定理3:平行四邊形的對(duì)角線互相平分

      56、平行四邊形判定定理1:兩組對(duì)角分別相等的四邊形是平行四邊形

      57、平行四邊形判定定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形

      58、平行四邊形判定定理3:對(duì)角線互相平分的四邊形是平行四邊形

      59、平行四邊形判定定理4:一組對(duì)邊平行相等的四邊形是平行四邊形

      60、矩形性質(zhì)定理1:矩形的四個(gè)角都是直角

      61、矩形性質(zhì)定理2:矩形的對(duì)角線相等

      62、矩形判定定理1:有三個(gè)角是直角的四邊形是矩形

      63、矩形判定定理2:對(duì)角線相等的平行四邊形是矩形

      64、菱形性質(zhì)定理1:菱形的四條邊都相等

      65、菱形性質(zhì)定理2:菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

      66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

      67、菱形判定定理1:四邊都相等的四邊形是菱形

      68、菱形判定定理2:對(duì)角線互相垂直的平行四邊形是菱形

      69、正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等

      70、正方形性質(zhì)定理2:正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

      71、定理1:關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

      72、定理2:關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分

      73、逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

      74、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等

      75、等腰梯形的兩條對(duì)角線相等

      76、等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形

      77、對(duì)角線相等的梯形是等腰梯形

      78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

      79、推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

      80、推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

      81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半

      82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h

      83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d

      84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

      85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

      86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

      87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

      88、定理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

      89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

      90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

      91、相似三角形判定定理1:兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

      92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

      93、判定定理2:兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)

      94、判定定理3:三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

      95、定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似(HL)

      96、性質(zhì)定理1:相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

      97、性質(zhì)定理2:相似三角形周長(zhǎng)的比等于相似比

      98、性質(zhì)定理3:相似三角形面積的比等于相似比的平方

      99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90)

      100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a)

      101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

      102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

      103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

      104、同圓或等圓的半徑相等

      105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

      106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

      107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

      108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

      109、定理:不在同一直線上的三點(diǎn)確定一個(gè)圓。

      110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

      111、推論1

     、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對(duì)的兩條弧

     、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條。ㄖ睆剑

      ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

      112、推論2

      圓的兩條平行弦所夾的弧相等

      113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

      114、定理

      在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

      115、推論

      在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

      116、定理

      一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

      117、推論1

      同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

      118、推論2

      半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

      119、推論3

      如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

      120、定理

      圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

      121、①直線L和⊙O相交0<=d<r

     、谥本L和⊙O相切d=r

      ③直線L和⊙O相離d>r

      122、切線的判定定理

      經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

      123、切線的性質(zhì)定理

      圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

      124、推論1

      經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

      125、推論2

      經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

      126、切線長(zhǎng)定理

      從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

      127、圓的外切四邊形的兩組對(duì)邊的和相等

      128、弦切角定理

      弦切角等于它所夾的弧對(duì)的圓周角?

      129、推論

      如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

      130、相交弦定理

      圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

      131、推論

      如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

      132、切割線定理

      從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)?

      133、推論

      從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條

      割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

      134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

      135、①兩圓外離d>R+r

     、趦蓤A外切d=R+r

     、蹆蓤A相交R—r<d<R+r(R>r)

     、軆蓤A內(nèi)切d=R—r(R>r)

     、輧蓤A內(nèi)含d<R—r(R>r)

      136、定理

      相交兩圓的連心線垂直平分兩圓的公共弦

      137、定理

      把圓平均分成n(n≥3):

     、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

     、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

      138、定理

      任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

      139、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n

      140、定理

      正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

      141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長(zhǎng)

      142、正三角形面積√3a^2/4,a表示邊長(zhǎng)

      143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4

      144、弧長(zhǎng)計(jì)算公式:L=n兀R/180——》L=nR

      145、扇形面積公式:S扇形=n兀R^2/360=LR/2

      146、內(nèi)公切線長(zhǎng)=d—(R—r),外公切線長(zhǎng)=d—(R+r)

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 2

      第一章圖形的變換

      考點(diǎn)一、平移(3~5分)

      1、定義

      把一個(gè)圖形整體沿某一方向移動(dòng),會(huì)得到一個(gè)新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動(dòng)叫做平移變換,簡(jiǎn)稱平移。

      2、性質(zhì)

      (1)平移不改變圖形的大小和形狀,但圖形上的每個(gè)點(diǎn)都沿同一方向進(jìn)行了移動(dòng)

      (2)連接各組對(duì)應(yīng)點(diǎn)的線段平行(或在同一直線上)且相等。

      考點(diǎn)二、軸對(duì)稱(3~5分)

      1、定義

      把一個(gè)圖形沿著某條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線成軸對(duì)稱,該直線叫做對(duì)稱軸。

      2、性質(zhì)

      (1)關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形。

      (2)如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線。

      (3)兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上。

      3、判定

      如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。

      4、軸對(duì)稱圖形

      把一個(gè)圖形沿著某條直線折疊,如果直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸。

      考點(diǎn)三、旋轉(zhuǎn)(3~8分)

      1、定義

      把一個(gè)圖形繞某一點(diǎn)o轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),其中o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。

      2、性質(zhì)

      (1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。

      (2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。

      考點(diǎn)四、中心對(duì)稱(3分)

      1、定義

      把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心。

      2、性質(zhì)

      (1)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。

      (2)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分。

      (3)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或在同一直線上)且相等。

      3、判定

      如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱。

      4、中心對(duì)稱圖形

      把一個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)店就是它的對(duì)稱中心。

      考點(diǎn)五、坐標(biāo)系中對(duì)稱點(diǎn)的特征(3分)

      1、關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的特征

      兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為p’(-x,-y)

      2、關(guān)于x軸對(duì)稱的點(diǎn)的特征

      兩個(gè)點(diǎn)關(guān)于x軸對(duì)稱時(shí),它們的坐標(biāo)中,x相等,y的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為p’(x,-y)

      3、關(guān)于y軸對(duì)稱的點(diǎn)的特征

      兩個(gè)點(diǎn)關(guān)于y軸對(duì)稱時(shí),它們的坐標(biāo)中,y相等,x的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為p’(-x,y)

      第二章圖形的相似

      考點(diǎn)一、比例線段(3分)

      1、比例線段的相關(guān)概念

      如果選用同一長(zhǎng)度單位量得兩條線段a,b的長(zhǎng)度分別為m,n,那么就說(shuō)這兩條線段的比是,或?qū)懗蒩:b=m:n

      在兩條線段的'比a:b中,a叫做比的前項(xiàng),b叫做比的后項(xiàng)。

      在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡(jiǎn)稱比例線段

      若四條a,b,c,d滿足或a:b=c:d,那么a,b,c,d叫做組成比例的項(xiàng),線段a,d叫做比例外項(xiàng),線段b,c叫做比例內(nèi)項(xiàng),線段的d叫做a,b,c的第四比例項(xiàng)。

      如果作為比例內(nèi)項(xiàng)的是兩條相同的線段,即或a:b=b:c,那么線段b叫做線段a,c的比例中項(xiàng)。

      2、比例的性質(zhì)

      (1)基本性質(zhì)

     、賏:b=c:dad=bc

     、赼:b=b:c

      (2)更比性質(zhì)(交換比例的內(nèi)項(xiàng)或外項(xiàng))

      (交換內(nèi)項(xiàng))

      (交換外項(xiàng))

      (同時(shí)交換內(nèi)項(xiàng)和外項(xiàng))

      (3)反比性質(zhì)(交換比的前項(xiàng)、后項(xiàng)):

      (4)合比性質(zhì):

      (5)等比性質(zhì):

      3、黃金分割

      把線段ab分成兩條線段ac,bc(ac>bc),并且使ac是ab和bc的比例中項(xiàng),叫做把線段ab黃金分割,點(diǎn)c叫做線段ab的黃金分割點(diǎn),其中ac=ab0.618ab

      考點(diǎn)二、平行線分線段成比例定理(3~5分)

      三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。

      推論:

      (1)平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例。

      逆定理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。

      (2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例。

      考點(diǎn)三、相似三角形(3~8分)

      1、相似三角形的概念

      對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形叫做相似三角形。相似用符號(hào)“∽”來(lái)表示,讀作“相似于”。相似三角形對(duì)應(yīng)邊的比叫做相似比(或相似系數(shù))。

      2、相似三角形的基本定理

      平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似。

      用數(shù)學(xué)語(yǔ)言表述如下:

      ∵de∥bc,∴△ade∽△abc

      相似三角形的等價(jià)關(guān)系:

      (1)反身性:對(duì)于任一△abc,都有△abc∽△abc;

      (2)對(duì)稱性:若△abc∽△a’b’c’,則△a’b’c’∽△abc

      (3)傳遞性:若△abc∽△a’b’c’,并且△a’b’c’∽△a’’b’’c’’,則△abc∽△a’’b’’c’’。

      3、三角形相似的判定

      (1)三角形相似的判定方法

     、俣x法:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似

     、谄叫蟹ǎ浩叫杏谌切我贿叺闹本和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

     、叟卸ǘɡ1:如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似,可簡(jiǎn)述為兩角對(duì)應(yīng)相等,兩三角形相似。

     、芘卸ǘɡ2:如果一個(gè)三角形的兩條邊和另一個(gè)三角形的兩條邊對(duì)應(yīng)相等,并且?jiàn)A角相等,那么這兩個(gè)三角形相似,可簡(jiǎn)述為兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似。

     、菖卸ǘɡ3:如果一個(gè)三角形的三條邊與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似,可簡(jiǎn)述為三邊對(duì)應(yīng)成比例,兩三角形相似

      (2)直角三角形相似的判定方法

      ①以上各種判定方法均適用

     、诙ɡ恚喝绻粋(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

     、鄞怪狈ǎ褐苯侨切伪恍边吷系母叻殖傻膬蓚(gè)直角三角形與原三角形相似。

      4、相似三角形的性質(zhì)

      (1)相似三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例

      (2)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

      (3)相似三角形周長(zhǎng)的比等于相似比

      (4)相似三角形面積的比等于相似比的平方。

      5、相似多邊形

      (1)如果兩個(gè)邊數(shù)相同的多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例,那么這兩個(gè)多邊形叫做相似多邊形。相似多邊形對(duì)應(yīng)邊的比叫做相似比(或相似系數(shù))

      (2)相似多邊形的性質(zhì)

      ①相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例

      ②相似多邊形周長(zhǎng)的比、對(duì)應(yīng)對(duì)角線的比都等于相似比

      ③相似多邊形中的對(duì)應(yīng)三角形相似,相似比等于相似多邊形的相似比

     、芟嗨贫噙呅蚊娣e的比等于相似比的平方

      6、位似圖形

      如果兩個(gè)圖形不僅是相似圖形,而且每組對(duì)應(yīng)點(diǎn)所在直線都經(jīng)過(guò)同一個(gè)點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,此時(shí)的相似比叫做位似比。

      性質(zhì):每一組對(duì)應(yīng)點(diǎn)和位似中心在同一直線上,它們到位似中心的距離之比都等于位似比。

      由一個(gè)圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個(gè)圖形放大或縮小。

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 3

      一、特殊的平行四邊形:

      1.矩形:

     。1)定義:有一個(gè)角是直角的平行四邊形。

     。2)性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線平分且相等。

     。3)判定定理:

      ①有一個(gè)角是直角的平行四邊形叫做矩形。

      ②對(duì)角線相等的平行四邊形是矩形。

      ③有三個(gè)角是直角的四邊形是矩形。

      直角三角形的性質(zhì):直角三角形中所對(duì)的直角邊等于斜邊的一半。

      2.菱形:

     。1)定義:鄰邊相等的平行四邊形。

     。2)性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。

     。3)判定定理:

      ①一組鄰邊相等的平行四邊形是菱形。

      ②對(duì)角線互相垂直的平行四邊形是菱形。

     、鬯臈l邊相等的四邊形是菱形。

     。4)面積:

      3.正方形:

     。1)定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。

     。2)性質(zhì):四條邊都相等,四個(gè)角都是直角,對(duì)角線互相垂直平分。正方形既是矩形,又是菱形。

      (3)正方形判定定理:

     、賹(duì)角線互相垂直平分且相等的四邊形是正方形;

     、谝唤M鄰邊相等,一個(gè)角為直角的平行四邊形是正方形;

      ③對(duì)角線互相垂直的矩形是正方形;

     、茑忂呄嗟鹊木匦问钦叫

     、萦幸粋(gè)角是直角的`菱形是正方形;

     、迣(duì)角線相等的菱形是正方形。

      二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:

      1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎(chǔ)上擴(kuò)充來(lái)的。矩形是由平行四邊形增加“一個(gè)角為90°”的條件得到的,它在角和對(duì)角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對(duì)角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個(gè)角為90°”兩個(gè)條件得到的,它在邊、角和對(duì)角線方面都具有比平行四邊形更多的特性。

      2.矩形、菱形的判定可以根據(jù)出發(fā)點(diǎn)不同而分成兩類:一類是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個(gè)出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。

      三、判定一個(gè)四邊形是特殊四邊形的步驟:

      常見(jiàn)考法

      (1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計(jì)算;

     。2)靈活運(yùn)用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形;

     。3)一些折疊問(wèn)題;

     。4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設(shè)置許多考題。

      誤區(qū)提醒

     。1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現(xiàn)混淆;

      (2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現(xiàn)混淆;

     。3)不能正確的理解和運(yùn)用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);

     。4)再利用對(duì)角線長(zhǎng)度求菱形的面積時(shí),忘記乘;

      (5)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 4

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):中位線

      知識(shí)要點(diǎn):梯形的中位線平行于兩底,并且等于兩底和的一半。

      1.中位線概念

      (1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

      (2)梯形中位線定義:連結(jié)梯形兩腰中點(diǎn)的線段叫做梯形的中位線。

      注意:

      (1)要把三角形的中位線與三角形的中線區(qū)分開(kāi)。三角形中線是連結(jié)一頂點(diǎn)和它對(duì)邊的中點(diǎn),而三角形中位線是連結(jié)三角形兩邊中點(diǎn)的線段。

      (2)梯形的中位線是連結(jié)兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。

      (3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線就變成三角形的中位線。

      2.中位線定理

      (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

      三角形兩邊中點(diǎn)的連線(中位線)平行于第BC邊,且等于第三邊的一半。

      知識(shí)要領(lǐng)總結(jié):三角形的中位線所構(gòu)成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

      下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

      平面直角坐標(biāo)系

      平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

      水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的`交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

      平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

      三個(gè)規(guī)定:

     、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

     、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

     、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

      相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

      初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

      對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。

      平面直角坐標(biāo)系的構(gòu)成

      在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

      通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

      初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

      下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

      點(diǎn)的坐標(biāo)的性質(zhì)

      建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

      對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

      一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

      希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

      初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

      關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

      因式分解的一般步驟

      如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

      通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

      注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

      相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

      初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

      下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

      因式分解

      因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

      因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

      因式分解與整式乘法的關(guān)系:m(a+b+c)

      公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

      公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

      提取公因式步驟:

     、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。

      分解因式注意;

     、俨粶(zhǔn)丟字母

      ②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

     、垭p重括號(hào)化成單括號(hào)

     、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

     、菹嗤蚴綄(xiě)成冪的形式

      ⑥首項(xiàng)負(fù)號(hào)放括號(hào)外

     、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。

      通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 5

      1有理數(shù)加法法則

      1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

      2、異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;

      3、一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。

      2有理數(shù)加法的運(yùn)算律

      1、加法的交換律:a+b=b+a;

      2、加法的結(jié)合律:(a+b)+c=a+(b+c)

      3有理數(shù)減法法則

      減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)

      4有理數(shù)乘法法則

      1、兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;

      2、任何數(shù)同零相乘都得零;

      3、幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的'個(gè)數(shù)決定。

      5有理數(shù)乘法的運(yùn)算律

      1、乘法的交換律:ab=ba;

      2、乘法的結(jié)合律:(ab)c=a(bc);

      3、乘法的分配律:a(b+c)=ab+ac

      6單項(xiàng)式

      只含有數(shù)字與字母的積的代數(shù)式叫做單項(xiàng)式。

      注意:?jiǎn)雾?xiàng)式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。

      7多項(xiàng)式

      1、幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。其中每個(gè)單項(xiàng)式叫做這個(gè)多項(xiàng)式的項(xiàng)。多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。多項(xiàng)式中次數(shù)最高的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。

      2、同類項(xiàng)所有字母相同,并且相同字母的指數(shù)也分別相同的項(xiàng)叫做同類項(xiàng)。幾個(gè)常數(shù)項(xiàng)也是同類項(xiàng)。

      8中心對(duì)稱

      1、定義:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心。這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn)。

      2、心對(duì)稱的兩條基本性質(zhì):

     。1)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過(guò)對(duì)稱中心,而且被對(duì)稱中心所平分。

     。2)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形。

      3、中心對(duì)稱圖形

      把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心。

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 6

      動(dòng)點(diǎn)與函數(shù)圖象問(wèn)題常見(jiàn)的四種類型:

      1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),判斷函數(shù)圖象.

      3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),判斷函數(shù)圖象.

      4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),判斷函數(shù)圖象.

      圖形運(yùn)動(dòng)與函數(shù)圖象問(wèn)題常見(jiàn)的三種類型:

      1、線段與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過(guò)三角形或四邊形,進(jìn)行分段,判斷函數(shù)圖象.

      2、多邊形與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)另一個(gè)多邊形,判斷函數(shù)圖象.

      3、多邊形與圓的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)圓,判斷函數(shù)圖象.

      動(dòng)點(diǎn)問(wèn)題常見(jiàn)的`四種類型:

      1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過(guò)全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

      2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過(guò)探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

      3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.

      4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.

      總結(jié)反思:

      本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

      解答動(dòng)態(tài)性問(wèn)題通常是對(duì)幾何圖形運(yùn)動(dòng)過(guò)程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的

      解答函數(shù)的圖象問(wèn)題一般遵循的步驟:

      1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段.

      2、求出每段的解析式.

      3、由每段的解析式確定每段圖象的形狀.

      對(duì)于用圖象描述分段函數(shù)的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):

      1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

      2、自變量變化函數(shù)值也變化的增減變化情況.

      3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 7

      關(guān)于初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)

      1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

      2、三角形的分類

      3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

      4、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

      5、中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。

      6、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

      7、高線、中線、角平分線的意義和做法

      8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。

      9、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°

      推論1直角三角形的兩個(gè)銳角互余

      推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和

      推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

      10、三角形的外角:三角形的一條邊與另一條邊延長(zhǎng)線的夾角,叫做三角形的外角。

      11、三角形外角的性質(zhì)

      (1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長(zhǎng)線;

      (2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;

      (3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角;

      (4)三角形的外角和是360°。

      四邊形(含多邊形)知識(shí)點(diǎn)、概念總結(jié)

      一、平行四邊形的定義、性質(zhì)及判定

      1、兩組對(duì)邊平行的四邊形是平行四邊形。

      2、性質(zhì):

      (1)平行四邊形的對(duì)邊相等且平行

      (2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)

      (3)平行四邊形的對(duì)角線互相平分

      3、判定:

      (1)兩組對(duì)邊分別平行的四邊形是平行四邊形

      (2)兩組對(duì)邊分別相等的四邊形是平行四邊形

      (3)一組對(duì)邊平行且相等的四邊形是平行四邊形

      (4)兩組對(duì)角分別相等的四邊形是平行四邊形

      (5)對(duì)角線互相平分的四邊形是平行四邊形

      4、對(duì)稱性:平行四邊形是中心對(duì)稱圖形

      二、矩形的定義、性質(zhì)及判定

      1、定義:有一個(gè)角是直角的平行四邊形叫做矩形

      2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線相等

      3、判定:

      (1)有一個(gè)角是直角的平行四邊形叫做矩形

      (2)有三個(gè)角是直角的四邊形是矩形

      (3)兩條對(duì)角線相等的平行四邊形是矩形

      4、對(duì)稱性:矩形是軸對(duì)稱圖形也是中心對(duì)稱圖形。

      三、菱形的定義、性質(zhì)及判定

      1、定義:有一組鄰邊相等的平行四邊形叫做菱形

      (1)菱形的四條邊都相等

      (2)菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

      (3)菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形

      (4)菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半

      2、s菱=爭(zhēng)6(n、6分別為對(duì)角線長(zhǎng))

      3、判定:

      (1)有一組鄰邊相等的平行四邊形叫做菱形

      (2)四條邊都相等的四邊形是菱形

      (3)對(duì)角線互相垂直的平行四邊形是菱形

      4、對(duì)稱性:菱形是軸對(duì)稱圖形也是中心對(duì)稱圖形

      四、正方形定義、性質(zhì)及判定

      1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形

      2、性質(zhì):

      (1)正方形四個(gè)角都是直角,四條邊都相等

      (2)正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

      (3)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形

      (4)正方形的對(duì)角線與邊的夾角是45°

      (5)正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形

      3、判定:

      (1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等

      (2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角

      4、對(duì)稱性:正方形是軸對(duì)稱圖形也是中心對(duì)稱圖形

      五、梯形的定義、等腰梯形的性質(zhì)及判定

      1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

      2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對(duì)角線相等

      3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線相等的梯形是等腰梯形

      4、對(duì)稱性:等腰梯形是軸對(duì)稱圖形

      六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的'中位線平行于梯形的兩底并等于兩底和的一半。

      七、線段的重心是線段的中點(diǎn);平行四邊形的重心是兩對(duì)角線的交點(diǎn);三角形的重心是三條中線的交點(diǎn)。

      八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。

      九、多邊形

      為什么要學(xué)習(xí)數(shù)學(xué)

      作為一門(mén)普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會(huì)對(duì)數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無(wú)味,但事實(shí)上,數(shù)學(xué)是所有學(xué)科的基石之一,對(duì)我們?nèi)粘I钜约拔磥?lái)的職業(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。

      首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們?cè)趯W(xué)習(xí)的過(guò)程中時(shí)時(shí)刻刻面臨著思考、推理、證明等諸多問(wèn)題,而這些問(wèn)題正是鍛煉我們邏輯思維的好機(jī)會(huì)。通過(guò)長(zhǎng)期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問(wèn)題,更快速地找到正確的答案。這對(duì)我們?cè)诠ぷ骱蜕钪卸挤浅S袔椭,尤其是在解決復(fù)雜問(wèn)題時(shí)更能得心應(yīng)手。

      其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計(jì)算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測(cè)趨勢(shì),并且可以在實(shí)際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒(méi)有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計(jì)和制造過(guò)程,也需要運(yùn)用到數(shù)學(xué)知識(shí),因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

      除此之外,數(shù)學(xué)也是一種普遍使用的語(yǔ)言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語(yǔ)言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語(yǔ)言來(lái)描述自然世界的規(guī)律和現(xiàn)象。在社會(huì)科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運(yùn)用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計(jì)學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財(cái)務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識(shí)。

      最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來(lái)廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會(huì),如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會(huì)提供理論支持,同時(shí)也能夠解決現(xiàn)實(shí)中具體的問(wèn)題,使其在各自領(lǐng)域脫穎而出。

      怎樣快速提高數(shù)學(xué)成績(jī)?

      一、查缺補(bǔ)漏,主攻薄弱

      請(qǐng)制作“失分分析表”,包括“不會(huì)做的”和“不該丟分的”兩部分,分析模擬考試等試卷失分情況,在緊跟老師復(fù)習(xí)的基礎(chǔ)上,針對(duì)自己的薄弱環(huán)節(jié)重點(diǎn)彌補(bǔ)、改進(jìn)。

      別一味沖刺難題。做題是對(duì)理論知識(shí)的進(jìn)一步鞏固與實(shí)檢,我們要在理解的基礎(chǔ)上加強(qiáng)練習(xí),以達(dá)到鞏固的目的,但不能一味追求難題偏題。

      因?yàn)橹锌荚嚲碇杏?0%是比較靈活的題型,只有10%是真正的難題。30%那部分題目是我們能拿但容易失分的題目,我們要做到盡量多拿分,但如果我們一味求難求險(xiǎn),就會(huì)因?yàn)楹鲆暬A(chǔ)題型的夯實(shí)和鞏固而失掉這部分該得的分。在基礎(chǔ)掌握后,有條件的同學(xué)可再進(jìn)行一些難題怪題的攻關(guān),這樣的策略才更能保證效率。

      二、反思錯(cuò)題

      不要盲目找題做,陷入題海中,不要“就題論題”停留在“這題我會(huì)了”的低水平上。解題能力是在反思中提升的。懂、會(huì)、悟是數(shù)學(xué)水平的三個(gè)層次。簡(jiǎn)單說(shuō),聽(tīng)懂了,但不一定會(huì),更不意味著真正領(lǐng)悟了。

      三、克服無(wú)謂失分

      如何避免審題出錯(cuò)?

      原因:看太快。

      應(yīng)對(duì)策略:

      1.默讀法;2.重點(diǎn)字詞圈點(diǎn)勾畫(huà)法;3.審圖法。

      如何降低計(jì)算失誤?

      表面原因是粗心,其實(shí)是計(jì)算能力不足。平時(shí)對(duì)計(jì)算不以為然,認(rèn)為“沒(méi)有技術(shù)含量”。事實(shí)上計(jì)算也有很多“聰明算法”,如:邊化簡(jiǎn)邊計(jì)算、寧加勿減、寧乘勿除、小數(shù)化分?jǐn)?shù)、找最小最短的設(shè)元、放縮法、湊整法、圖象法等等計(jì)算技巧。

      應(yīng)對(duì)策略:

      1.不要為了趕時(shí)間而跳步計(jì)算;

      2.寧可筆算,少用口算,更不要再抱著計(jì)算器;

      3.對(duì)平時(shí)易算錯(cuò)的題型,可以驗(yàn)算一遍。

      四、關(guān)注幾個(gè)重點(diǎn)問(wèn)題

      1.新定義題型、非常規(guī)題型、存在性問(wèn)題。

      2.分析法—執(zhí)果索因,逆向思維,倒過(guò)來(lái)想,假設(shè)存在;不完全歸納法—根據(jù)例子,大膽猜想、努力驗(yàn)證。反例排除法、特殊圖形(特殊位置、極端值)探究法等。

      提高數(shù)學(xué)成績(jī)常用方法有哪些

      1、預(yù)習(xí)

      預(yù)期常常由于“沒(méi)時(shí)間,看不懂,不必要”等等原因被忽略。實(shí)際上預(yù)習(xí)是學(xué)習(xí)的必要過(guò)程,更是提高自學(xué)能力的好方法。

      2、學(xué)會(huì)聽(tīng)課

      聽(tīng)分析、聽(tīng)思路、聽(tīng)?wèi)?yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。

      3、做好錯(cuò)題本

      每個(gè)會(huì)學(xué)習(xí)的學(xué)生都會(huì)有錯(cuò)題本。調(diào)查發(fā)現(xiàn)那些沒(méi)有錯(cuò)題本,或者是只做不用的同學(xué),學(xué)習(xí)效果都不好。

      4、用好課外書(shū)

      正確認(rèn)識(shí)網(wǎng)絡(luò)課程和課外書(shū)籍,是副食,是幫助吸收的良藥。

      5、注重?cái)?shù)學(xué)思維方法的培養(yǎng)

      要注意數(shù)學(xué)思想和方法的指導(dǎo),站得高,才能看得遠(yuǎn)。

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 8

      一、初中數(shù)學(xué)基本概念

      1.方程:含有未知數(shù)的等式叫做方程。

      2.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

      3.方程的解:使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

      4.解方程:求方程的解的過(guò)程叫做解方程。

      5.恒等式:兩個(gè)含有相同的未知數(shù),并且含未知數(shù)項(xiàng)的系數(shù)都是零的整式方程是一元一次方程。

      二、初中數(shù)學(xué)基本公式

      1.三角形面積的公式:三角形面積=底×高÷2,用字母表示為“S=ah÷2”。

      2.平行四邊形面積的公式:平行四邊形面積=底×高,用字母表示為“S=ah”。

      3.梯形面積的公式:梯形面積=(上底+下底)×高÷2,用字母表示為“S=(a+b)h÷2”。

      4.圓的面積公式:圓面積=半徑×半徑×π,用字母表示為“S=πr2”。

      5.菱形的面積公式:菱形面積=底×高,用字母表示為“S=ab”。

      6.正方形面積公式:正方形面積=邊長(zhǎng)×邊長(zhǎng),用字母表示為“S=a2”。

      7.一元一次方程求解公式:ax=b,其中a和b為方程的系數(shù),x為未知數(shù)。當(dāng)a≠0時(shí),有唯一解;當(dāng)a=0且b≠0時(shí),無(wú)解;當(dāng)a=0且b=0時(shí),有無(wú)數(shù)解。

      三、初中數(shù)學(xué)基本定理

      1.等式的性質(zhì):等式兩邊同時(shí)加上(或減去)同一個(gè)代數(shù)式,所得結(jié)果仍是等式;等式兩邊同時(shí)乘以(或除以)同一個(gè)不為0的數(shù)或代數(shù)式,所得結(jié)果仍是等式。

      2.方程的解法:通過(guò)移項(xiàng)、合并同類項(xiàng)、去括號(hào)、去分母等方式,將一元一次方程轉(zhuǎn)化為ax=b的形式,求解得到方程的解。

      3.一元一次不等式的解法:將一元一次不等式轉(zhuǎn)化為ax>b或ax

      4.二元一次方程組的解法:通過(guò)代入消元法或加減消元法,將二元一次方程組轉(zhuǎn)化為一個(gè)一元一次方程,然后求解得到方程組的解。

      5.菱形的性質(zhì):菱形的四條邊相等,對(duì)角線互相垂直平分,并且每一組對(duì)角線平分一組對(duì)角。

      6.正方形的性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì),并且四條邊相等,四個(gè)角都是直角。

      7.相似三角形的判定定理:兩個(gè)三角形對(duì)應(yīng)邊成比例且對(duì)應(yīng)角相等,則這兩個(gè)三角形相似。

      8.全等三角形的判定定理:兩個(gè)三角形三邊相等、兩邊夾角相等、兩角夾邊相等、兩角和一邊相等,則這兩個(gè)三角形全等。

      9.垂徑定理:在圓中,直徑平分弦(不是直徑的弦)所對(duì)的兩條弧,平分弦所對(duì)的圓周弧的'弦垂直平分弦。

      10.圓的切線的判定定理:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線;經(jīng)過(guò)圓的半徑外端且垂直于切線的直線是圓的切線;圓的割線定理:一條直線與一個(gè)圓有兩個(gè)不同的交點(diǎn),則這條直線被圓截得的線段長(zhǎng)的平方等于這個(gè)圓上兩點(diǎn)所對(duì)應(yīng)的弦長(zhǎng)的平方差。

      11.相交弦定理:圓內(nèi)的兩條相交弦被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。

      12.切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的積相等。

      13.圓心角、弧、弦的關(guān)系定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等;相等的弧所對(duì)的弦也相等;相等的弦所對(duì)的弧也相等;在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等;弧的度數(shù)等于它所對(duì)的圓心角度數(shù);一個(gè)圓心角等于它所對(duì)的弧的度數(shù);半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 9

      一、數(shù)與代數(shù)

      1.有理數(shù)

      有理數(shù):包括正整數(shù)、0和負(fù)整數(shù)。

      數(shù)軸:包括原點(diǎn)、正方向和單位長(zhǎng)度。

      相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。

      絕對(duì)值:正數(shù)的絕對(duì)值是其本身,負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0。

      2.整式與分式

      整式:包括單項(xiàng)式和多項(xiàng)式。

      分式:包括一般形式和特殊形式。

      代數(shù)式:包括單字母、單項(xiàng)式和多項(xiàng)式。

      二、空間與圖形

      1.點(diǎn)、線、面

      點(diǎn):沒(méi)有大小,沒(méi)有長(zhǎng)度。

      線:沒(méi)有寬度,只有長(zhǎng)度。

      面:有長(zhǎng)度和寬度,沒(méi)有高度。

      2.基本圖形

      直線:包括直線、射線、線段。

      角:包括平角、周角和一般的角。

      三角形:包括等邊三角形、等腰三角形和一般三角形。

      四邊形:包括矩形、正方形、梯形和平行四邊形。

      圓:包括圓的性質(zhì)和圓的定理。

      三、統(tǒng)計(jì)與概率

      1.統(tǒng)計(jì)

      統(tǒng)計(jì)圖:包括扇形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖。

      統(tǒng)計(jì)表:包括簡(jiǎn)單統(tǒng)計(jì)表和復(fù)合統(tǒng)計(jì)表。

      數(shù)據(jù)的收集與整理:包括抽樣調(diào)查、全面調(diào)查和自主調(diào)查。

      2.概率

      隨機(jī)事件:包括必然事件、不可能事件和隨機(jī)事件。

      概率:包括計(jì)算事件發(fā)生的.概率和隨機(jī)事件的概率。

      以上是初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)的主要內(nèi)容,這些知識(shí)點(diǎn)是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),需要學(xué)生熟練掌握和應(yīng)用。

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 10

      一、平移變換:

      1、概念:在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。

      2、性質(zhì):

     。1)平移前后圖形全等;

     。2)對(duì)應(yīng)點(diǎn)連線平行或在同一直線上且相等。

      3、平移的作圖步驟和方法:

     。1)分清題目要求,確定平移的方向和平移的距離。

     。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn)。

      (3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn)。

     。4)連接所作的各個(gè)關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母。

     。5)寫(xiě)出結(jié)論。

      二、旋轉(zhuǎn)變換:

      1、概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。

      說(shuō)明:

     。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

     。2)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)中心始終保持不動(dòng)。

     。3)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)的`方向是相同的。

      (4)旋轉(zhuǎn)過(guò)程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

      2、性質(zhì):

     。1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

     。2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

     。3)旋轉(zhuǎn)前、后的圖形全等。

      3、旋轉(zhuǎn)作圖的步驟和方法:

     。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

     。2)找出圖形的關(guān)鍵點(diǎn);

     。3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來(lái),然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);

      (4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。

      說(shuō)明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

      4、常見(jiàn)考法

     。1)把平移旋轉(zhuǎn)結(jié)合起來(lái)證明三角形全等;

     。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。

      誤區(qū)提醒

      (1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;

     。2)平移與旋轉(zhuǎn)的性質(zhì)沒(méi)有掌握。

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 11

      動(dòng)點(diǎn)與函數(shù)圖象問(wèn)題常見(jiàn)的四種類型:

      1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      圖形運(yùn)動(dòng)與函數(shù)圖象問(wèn)題常見(jiàn)的三種類型:

      1、線段與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過(guò)三角形或四邊形,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

      2、多邊形與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)另一個(gè)多邊形,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

      3、多邊形與圓的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)圓,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

      動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類型:

      1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過(guò)全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

      2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過(guò)探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的`邊或角的關(guān)系.

      3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.

      4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.

      總結(jié)反思:

      本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

      解答動(dòng)態(tài)性問(wèn)題通常是對(duì)幾何圖形運(yùn)動(dòng)過(guò)程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的

      解答函數(shù)的圖象問(wèn)題一般遵循的步驟:

      1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段.

      2、求出每段的解析式.

      3、由每段的解析式確定每段圖象的形狀.

      對(duì)于用圖象描述分段函數(shù)的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):

      1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

      2、自變量變化函數(shù)值也變化的增減變化情況.

      3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 12

      在初中數(shù)學(xué)課堂教學(xué)中,小結(jié)一般作為總結(jié)本課,開(kāi)啟下一課的鑰匙。但是在具體執(zhí)行過(guò)程中,受到時(shí)間、學(xué)生心態(tài)、教師課堂設(shè)計(jì)水平等因素的限制,初中數(shù)學(xué)課堂小結(jié)在運(yùn)用的過(guò)程中呈現(xiàn)出多種問(wèn)題。究其原因是多方面的,而其最主要的原因則來(lái)源于教師對(duì)學(xué)生心理的把握力度不夠。心理學(xué)專家在當(dāng)代少年兒童的大腦結(jié)構(gòu)分析基礎(chǔ)上所做出的研究表明,在初中階段的學(xué)生對(duì)課程的關(guān)注度主要集中在前15分鐘,個(gè)別注意力比較好的學(xué)生能堅(jiān)持到15~25分鐘,隨著時(shí)間的推移,從25分鐘到45分鐘之間學(xué)生的記憶力和注意力則出現(xiàn)了逐漸下滑的趨勢(shì)。由此可見(jiàn),教師在做初中數(shù)學(xué)課程設(shè)計(jì)時(shí),僅僅按照傳統(tǒng)習(xí)慣將課堂小結(jié)作為課末總結(jié)的方式并不科學(xué),對(duì)學(xué)生的課堂學(xué)習(xí)和課下探索延伸起不到推動(dòng)作用。

      由此,在新的知識(shí)環(huán)節(jié)講解和學(xué)習(xí)的過(guò)程中,對(duì)課堂小結(jié)的設(shè)計(jì),教師應(yīng)該通過(guò)巧妙的規(guī)劃,實(shí)現(xiàn)溫故知新,而這又是對(duì)本堂課程的總結(jié)和反思的過(guò)程,具有極強(qiáng)的邏輯性和漸進(jìn)性,環(huán)環(huán)相扣,同時(shí)要為學(xué)生的思考和課下探索的延伸留出獨(dú)立的空間。因此,按照具體的操作,本文以浙教版初中數(shù)學(xué)“探索多邊形的內(nèi)角和”的課堂學(xué)習(xí)為例,對(duì)課堂小結(jié)的運(yùn)用從以下兩個(gè)方面進(jìn)行闡述。

      一、撥迷梳“理”,溫故知新

      七年級(jí)“探索多邊形的內(nèi)角和”一課的教學(xué)重點(diǎn)是讓學(xué)生了解什么是多邊形、什么是內(nèi)角、如何求內(nèi)角和、如何在現(xiàn)實(shí)生活中利用此種計(jì)算方法。新課標(biāo)要求,學(xué)生作為教學(xué)主體,對(duì)課程重點(diǎn)內(nèi)容的了解和領(lǐng)悟主要是以他們自身的動(dòng)手操作為主,這也是教師在教案設(shè)計(jì)時(shí)的主要切入點(diǎn)之一。在明確本堂課的教學(xué)重點(diǎn)之后,教師需要對(duì)以往學(xué)習(xí)過(guò)的知識(shí)點(diǎn)進(jìn)行梳理,并找出與本堂課有關(guān)聯(lián)性的知識(shí)點(diǎn),在課程初始時(shí)作為引導(dǎo),通過(guò)對(duì)以往知識(shí)點(diǎn)的回顧,如三角形、相交線等已學(xué)知識(shí)點(diǎn)引出本堂課的重點(diǎn)。而后面即將學(xué)習(xí)的課程,如“多姿多彩幾何圖形”等的.相應(yīng)測(cè)試,也可以作為學(xué)生課堂及課后的延伸知識(shí)點(diǎn),在教師的課程講解過(guò)程中予以貫穿。當(dāng)然,在課程設(shè)計(jì)初期,教師要尤為注意的是,應(yīng)根據(jù)本堂課知識(shí)點(diǎn)的重點(diǎn)排序,由主到輔、由簡(jiǎn)入深地安排好具有節(jié)奏感的講解內(nèi)容及小結(jié),而作為延伸思考的知識(shí)點(diǎn)在每個(gè)小結(jié)部分可以按照其相關(guān)性和重要性進(jìn)行穿插安排。

      二、動(dòng)手操作,注重反思

      “探索多邊形的內(nèi)角和”中,多邊形的概念是本課各個(gè)難點(diǎn)展開(kāi)的基礎(chǔ),按照多邊形的概念,教師可以讓學(xué)生用線、卡紙、鐵絲等工具自行制作凹多邊形或凸多變形,以體驗(yàn)多邊形的曲線美。引導(dǎo)學(xué)生嘗試以拉伸和縮小的方式構(gòu)架出凹多邊形和凸多變形后,教師可以讓學(xué)生按照體驗(yàn)來(lái)描述二者的區(qū)別和相同點(diǎn),并以此作為小結(jié)。當(dāng)學(xué)生做完歸納后,根據(jù)本課“多邊形的內(nèi)角和主要以凸多邊形為主”的教學(xué)目標(biāo)要求,教師可提問(wèn):“同學(xué)們目前已經(jīng)了解了二者的區(qū)別,本堂課要講解的‘多邊形內(nèi)角和’主要以凸多邊形為基礎(chǔ),但是為什么我們不以凹多邊形為基礎(chǔ)呢?請(qǐng)同學(xué)們仔細(xì)想想原因!苯處煹倪@種講解模式既可以為下面對(duì)“內(nèi)角和”的重點(diǎn)講解作鋪墊,又可以讓學(xué)生深入思考之前對(duì)凹凸多邊形的描述是否恰當(dāng),是否符合多邊形的數(shù)學(xué)性規(guī)律。

      在此種引導(dǎo)方法下,學(xué)生會(huì)按照下一個(gè)知識(shí)點(diǎn)的內(nèi)容來(lái)反思之前的小結(jié)是否具有全面性。在反復(fù)的思考和對(duì)比過(guò)程中,學(xué)生的邏輯思維可以得到充分的訓(xùn)練。這對(duì)培養(yǎng)學(xué)生的數(shù)學(xué)思維,以及對(duì)知識(shí)點(diǎn)的重復(fù)性推敲和反思能力的提升具有促進(jìn)作用。一旦學(xué)生在思考和探討的過(guò)程中,摸索到數(shù)學(xué)本身的規(guī)律,并從復(fù)雜多樣的數(shù)學(xué)知識(shí)點(diǎn)中找到其原本的架構(gòu),自然會(huì)在頭腦中建立起一個(gè)符合自身記憶和領(lǐng)悟需要的數(shù)學(xué)知識(shí)體系。

      三、大道從簡(jiǎn),循環(huán)漸進(jìn)

      大道從簡(jiǎn),按照初中數(shù)學(xué)的知識(shí)點(diǎn)架構(gòu)來(lái)看,每堂課的每個(gè)知識(shí)點(diǎn)都可以在被重點(diǎn)提煉之后作為節(jié)點(diǎn)來(lái)布置課堂小結(jié)。以數(shù)學(xué)的邏輯思維傳承性為基礎(chǔ),課堂上的下一個(gè)知識(shí)點(diǎn)就可以作為反思和推敲上一個(gè)小結(jié)的試金石,如此循環(huán)往復(fù)后,課末的最終知識(shí)點(diǎn)總結(jié)則對(duì)本課所有知識(shí)點(diǎn)小結(jié)進(jìn)行有效的補(bǔ)充和完善,進(jìn)而延伸出下堂課以及與本堂課重點(diǎn)內(nèi)容相關(guān)的其他數(shù)學(xué)知識(shí)點(diǎn)的探索和思考。

      當(dāng)然,這種教學(xué)方法也同樣可以運(yùn)用到其他學(xué)科的教學(xué)中。借助教師的漸進(jìn)式誘導(dǎo),學(xué)生會(huì)自主加入到課堂探索中,通過(guò)由簡(jiǎn)到難、由淺入深的逐層遞進(jìn)式反思和討論提升在課堂中的興趣度和專注度。

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 13

      一、初中數(shù)學(xué)基本概念

      1.方程:含有未知數(shù)的等式叫做方程。

      2.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

      3.二元一次方程:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的二元一次方程。

      4.二元一次方程組:由兩個(gè)二元一次方程組成的方程組。

      5.一元二次方程:含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程。

      6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數(shù)的值。

      7.一元二次方程的根:一元二次方程的解。

      8.一元二次方程的判別式:當(dāng)a是正數(shù)時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)a是負(fù)數(shù)時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程沒(méi)有實(shí)數(shù)根;當(dāng)a是零時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)相等的實(shí)數(shù)根。

      9.函數(shù):在某變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),那么稱y是x的函數(shù),x叫做自變量。

      10.一次函數(shù):在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),那么稱y是x的一次函數(shù)。

      11.正比例函數(shù):在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),并且這個(gè)數(shù)值在比例上成正比,那么稱y是x的比例函數(shù)。

      12.反比例函數(shù):在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),并且這個(gè)數(shù)值在比例上成反比,那么稱y是x的反比例函數(shù)。

      13.平行四邊形:在同一個(gè)平面內(nèi)兩組對(duì)角分別平行的四邊形叫做平行四邊形。

      14.矩形:有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。

      15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。

      16.正方形:四邊相等的矩形叫做正方形。

      17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。

      18.三角形:在同一個(gè)平面內(nèi)由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

      19.中線:連接一個(gè)頂點(diǎn)和它對(duì)邊的中點(diǎn)的線段叫做中線。

      20.高線:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊作垂線,垂足與頂點(diǎn)之間的線段叫做高線。

      21.角平分線:三角形的一個(gè)內(nèi)角的平分線與它的對(duì)邊相交,這個(gè)角的.頂點(diǎn)與交點(diǎn)之間的線段叫做角平分線。

      22.中位線:連接三角形兩邊中點(diǎn)的線段叫做中位線。

      23.軸對(duì)稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形。

      24.直接開(kāi)平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開(kāi)平方的方法解一元二次方程的方法。

      25.配方法:把一元二次方程的常數(shù)項(xiàng)移到方程的右邊,兩邊加上一次項(xiàng)系數(shù)的一半的平方,再用右邊的式子除以左邊的式子,得到一個(gè)平方的形式,再用直接開(kāi)平方的方法求解一元二次方程的方法。

      26.公式法:用求根公式解一元二次方程的方法。

      27.因式分解法:將一元二次方程分解成兩個(gè)一次因式的積等于0的一元二次方程,然后將各個(gè)因式分解,得到一元一次方程,再用直接開(kāi)方法求解一元一次方程的方法。

      二、初中數(shù)學(xué)基本運(yùn)算

      1.整式:?jiǎn)雾?xiàng)式和多項(xiàng)式的統(tǒng)稱。

      2.單項(xiàng)式:由數(shù)字和字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)字或字母也叫做單項(xiàng)式。

      3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中不含字母的項(xiàng)叫做常數(shù)

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 14

      第一章 豐富的圖形世界

      1、幾何圖形

      從實(shí)物中抽象出來(lái)的各種圖形,包括立體圖形和平面圖形。

      2、點(diǎn)、線、面、體

      (1)幾何圖形的組成

      點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。

      線:面和面相交的地方是線,分為直線和曲線。

      面:包圍著體的是面,分為平面和曲面。

      體:幾何體也簡(jiǎn)稱體。

      (2)點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

      3、生活中的立體圖形

      生活中的立體圖形

      柱:棱柱:三棱柱、四棱柱(長(zhǎng)方體、正方體)、五棱柱、……

      正有理數(shù) 整數(shù)

      有理數(shù) 零 有理數(shù)

      負(fù)有理數(shù) 分?jǐn)?shù)

      2、相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零

      3、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫(huà)數(shù)軸時(shí),三要素缺一不可)。任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

      4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒(méi)有倒數(shù)。

      5、絕對(duì)值:在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

      正數(shù)的絕對(duì)值是它本身;負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0;橄喾磾(shù)的兩個(gè)數(shù)的絕對(duì)值相等。

      6、有理數(shù)比較大小:正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。

      7、有理數(shù)的運(yùn)算:

      (1)五種運(yùn)算:加、減、乘、除、乘方

      多個(gè)數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號(hào)為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號(hào)為正。只要有一個(gè)數(shù)為零,積就為零。

      有理數(shù)加法法則:

      同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。

      異號(hào)兩數(shù)相加,絕對(duì)值值相等時(shí)和為0;絕對(duì)值不相等時(shí),取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

      一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

      互為相反數(shù)的兩個(gè)數(shù)相加和為0。

      有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)!

      有理數(shù)乘法法則:

      兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。

      任何數(shù)與0相乘,積仍為0。

      有理數(shù)除法法則:

      兩個(gè)有理數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。

      0除以任何非0的數(shù)都得0。

      注意:0不能作除數(shù)。

      有理數(shù)的乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方。

      正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。

      (2)有理數(shù)的運(yùn)算順序

      先算乘方,再算乘除,最后算加減,如果有括號(hào),先算括號(hào)里面的。

      (3)運(yùn)算律

      加法交換律 加法結(jié)合律

      乘法交換律 乘法結(jié)合律

      乘法對(duì)加法的分配律

      8、科學(xué)記數(shù)法

      一般地,一個(gè)大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)-1)

      第三章 整式及其加減

      1、代數(shù)式

      用運(yùn)算符號(hào)(加、減、乘、除、乘方、開(kāi)方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。

      注意:①代數(shù)式中除了含有數(shù)、字母和運(yùn)算符號(hào)外,還可以有括號(hào);

     、诖鷶(shù)式中不含有“=、>、<、≠”等符號(hào)。等式和不等式都不是代數(shù)式,但等號(hào)和不等號(hào)兩邊的式子一般都是代數(shù)式;

     、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個(gè)代數(shù)式有意義,是實(shí)際問(wèn)題的要符合實(shí)際問(wèn)題的意義。

      ※代數(shù)式的書(shū)寫(xiě)格式:

     、俅鷶(shù)式中出現(xiàn)乘號(hào),通常省略不寫(xiě),如vt;

      ②數(shù)字與字母相乘時(shí),數(shù)字應(yīng)寫(xiě)在字母前面,如4a;

     、蹘Х?jǐn)?shù)與字母相乘時(shí),應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),如應(yīng)寫(xiě)作;

      ④數(shù)字與數(shù)字相乘,一般仍用“×”號(hào),即“×”號(hào)不省略;

      ⑤在代數(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般寫(xiě)成分?jǐn)?shù)的形式,如4÷(a-4)應(yīng)寫(xiě)作;注意:分?jǐn)?shù)線具有“÷”號(hào)和括號(hào)的雙重作用。

      ⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來(lái),再將單位名稱寫(xiě)在式子的后面,如平方米。

      2、整式:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

      ①單項(xiàng)式:都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項(xiàng)式。單項(xiàng)式中,所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù);數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的`系數(shù)。

      注意:1.單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式;2.單獨(dú)一個(gè)非零數(shù)的次數(shù)是0;3.當(dāng)單項(xiàng)式的系數(shù)為1或-1時(shí),這個(gè)“1”應(yīng)省略不寫(xiě),如-ab的系數(shù)是-1,a3b的系數(shù)是1。

     、诙囗(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng);次數(shù)最高的項(xiàng)的次數(shù)叫做多項(xiàng)式的次數(shù)。

      3、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。

      注意:①同類項(xiàng)有兩個(gè)條件:a.所含字母相同;b.相同字母的指數(shù)也相同。

     、谕愴(xiàng)與系數(shù)無(wú)關(guān),與字母的排列順序無(wú)關(guān);

      ③幾個(gè)常數(shù)項(xiàng)也是同類項(xiàng)。

      4、合并同類項(xiàng)法則:把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

      5、去括號(hào)法則

     、俑鶕(jù)去括號(hào)法則去括號(hào):

      括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不改變符號(hào);括號(hào)前面是“-”號(hào),把括號(hào)和它前面的“-”號(hào)去掉,括號(hào)里各項(xiàng)都改變符號(hào)。

      ②根據(jù)分配律去括號(hào):

      括號(hào)前面是“+”號(hào)看成+1,括號(hào)前面是“-”號(hào)看成-1,根據(jù)乘法的分配律用+1或-1去乘括號(hào)里的每一項(xiàng)以達(dá)到去括號(hào)的目的。

      6、添括號(hào)法則

      添“+”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都不改變;添“-”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都要改變。

      7、整式的運(yùn)算:

      整式的加減法:(1)去括號(hào);(2)合并同類項(xiàng)。

      第四章 基本平面圖形

      2、直線的性質(zhì)

      (1)直線公理:經(jīng)過(guò)兩個(gè)點(diǎn)有且只有一條直線。(兩點(diǎn)確定一條直線。)

      (2)過(guò)一點(diǎn)的直線有無(wú)數(shù)條。

      (3)直線是是向兩方面無(wú)限延伸的,無(wú)端點(diǎn),不可度量,不能比較大小。

      3、線段的性質(zhì)

      (1)線段公理:兩點(diǎn)之間的所有連線中,線段最短。(兩點(diǎn)之間線段最短。)

      (2)兩點(diǎn)之間的距離:兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。

      (3)線段的大小關(guān)系和它們的長(zhǎng)度的大小關(guān)系是一致的。

      4、線段的中點(diǎn):

      點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。AM = BM =1/2AB (或AB=2AM=2BM)。

      5、角:

      有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個(gè)角的頂點(diǎn),這兩條射線叫做這個(gè)角的邊。或:角也可以看成是一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。

      6、角的表示

      角的表示方法有以下四種:

     、儆脭(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。

     、谟眯(xiě)的希臘字母表示單獨(dú)的一個(gè)角,如∠α,∠β,∠γ,∠θ等。

      ③用一個(gè)大寫(xiě)英文字母表示一個(gè)獨(dú)立(在一個(gè)頂點(diǎn)處只有一個(gè)角)的角,如∠B,∠C等。

     、苡萌齻(gè)大寫(xiě)英文字母表示任一個(gè)角,如∠BAD,∠BAE,∠CAE等。

      注意:用三個(gè)大寫(xiě)字母表示角時(shí),一定要把頂點(diǎn)字母寫(xiě)在中間,邊上的字母寫(xiě)在兩側(cè)。

      7、角的度量

      角的度量有如下規(guī)定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

      把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

      把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

      1°=60’,1’=60”

      8、角的平分線

      從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

      9、角的性質(zhì)

      (1)角的大小與邊的長(zhǎng)短無(wú)關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

      (2)角的大小可以度量,可以比較,角可以參與運(yùn)算。

      10、平角和周角:一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時(shí),所形成的角叫做周角。

      11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線。

      從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),可以畫(huà)(n-3)條對(duì)角線,把這個(gè)n邊形分割成(n-2)個(gè)三角形。

      12、圓:平面上,一條線段繞著一個(gè)端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)O稱為圓心,線段OA的長(zhǎng)稱為半徑的長(zhǎng)(通常簡(jiǎn)稱為半徑)。

      圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡(jiǎn)稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。

      第五章 一元一次方程

      1、方程

      含有未知數(shù)的等式叫做方程。

      2、方程的解

      能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

      3、等式的性質(zhì)

      (1)等式的兩邊同時(shí)加上(或減去)同一個(gè)代數(shù)式,所得結(jié)果仍是等式。

      (2)等式的兩邊同時(shí)乘以同一個(gè)數(shù)((或除以同一個(gè)不為0的數(shù)),所得結(jié)果仍是等式。

      4、一元一次方程

      只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

      5、移項(xiàng):把方程中的某一項(xiàng),改變符號(hào)后,從方程的一邊移到另一邊,這種變形叫做移項(xiàng).

      6、解一元一次方程的一般步驟:

      (1)去分母(2)去括號(hào)(3)移項(xiàng)(把方程中的某一項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊,這種變形叫移項(xiàng)。)(4)合并同類項(xiàng)(5)將未知數(shù)的系數(shù)化為1

      第六章 數(shù)據(jù)的收集與整理

      1、普查與抽樣調(diào)查

      為了特定目的對(duì)全部考察對(duì)象進(jìn)行的全面調(diào)查,叫做普查。其中被考察對(duì)象的全體叫做總體,組成總體的每一個(gè)被考察對(duì)象稱為個(gè)體。

      從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個(gè)體叫做總體的一個(gè)樣本。

      2、扇形統(tǒng)計(jì)圖

      扇形統(tǒng)計(jì)圖:利用圓與扇形來(lái)表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計(jì)圖叫做扇形統(tǒng)計(jì)圖。(各個(gè)扇形所占的百分比之和為1)

      圓心角度數(shù)=360°×該項(xiàng)所占的百分比。(各個(gè)部分的圓心角度數(shù)之和為360°)

      3、頻數(shù)直方圖

      頻數(shù)直方圖是一種特殊的條形統(tǒng)計(jì)圖,它將統(tǒng)計(jì)對(duì)象的數(shù)據(jù)進(jìn)行了分組畫(huà)在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

      4、各種統(tǒng)計(jì)圖的特點(diǎn)

      條形統(tǒng)計(jì)圖:能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目。

      折線統(tǒng)計(jì)圖:能清楚地反映事物的變化情況。

      扇形統(tǒng)計(jì)圖:能清楚地表示出各部分在總體中所占的百分比。

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 15

      一、函數(shù)及其相關(guān)概念

      1、變量與常量

      在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

      一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。

      2、函數(shù)解析式

      用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

      使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

      3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

      (1)解析法

      兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

      (2)列表法

      把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

      (3)圖像法

      用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

      4、由函數(shù)解析式畫(huà)其圖像的一般步驟

      (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

      (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

      (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。

      二、相交線與平行線

      1、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)

      2、知識(shí)要點(diǎn)

     。1)在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

     。2)在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個(gè)公共點(diǎn),稱這兩條直線相交;如果兩條直線沒(méi)有公共點(diǎn),稱這兩條直線平行。

     。3)兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是

      鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,

      與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;+=180°。

      3、兩條直線相交所構(gòu)成的四個(gè)角中,一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線,這樣的兩個(gè)角互為對(duì)頂角。對(duì)頂角的性質(zhì):對(duì)頂角相等。如圖1所示,與互為對(duì)頂角。=; =。

      4、兩條直線相交所成的角中,如果有一個(gè)是直角或90°時(shí),稱這兩條直線互相垂直,

      其中一條叫做另一條的垂線。如圖2所示,當(dāng)=90°時(shí),⊥。

      垂線的性質(zhì):

      性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

      性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

      性質(zhì)3:如圖2所示,當(dāng)a⊥b時(shí),====90°。

      點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度叫點(diǎn)到直線的距離。

      5、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角基本特征:

      在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣的兩個(gè)角叫同位角。圖3中,共有對(duì)同位角:與是同位角;與是同位角;與是同位角;與是同位角。

      在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個(gè)角叫內(nèi)錯(cuò)角。圖3中,共有對(duì)內(nèi)錯(cuò)角:與是內(nèi)錯(cuò)角;與是內(nèi)錯(cuò)角。

      在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個(gè)角叫同旁內(nèi)角。圖3中,共有對(duì)同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。

      三、實(shí)數(shù)

      1、實(shí)數(shù)的分類

      (1)按定義分類:

     。2)按性質(zhì)符號(hào)分類:

      注:0既不是正數(shù)也不是負(fù)數(shù).

      2、實(shí)數(shù)的相關(guān)概念

     。1)相反數(shù)

      ①代數(shù)意義:只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù).0的相反數(shù)是0.

      ②幾何意義:在數(shù)軸上原點(diǎn)的`兩側(cè),與原點(diǎn)距離相等的兩個(gè)點(diǎn)表示的兩個(gè)數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱.

     、刍橄喾磾(shù)的兩個(gè)數(shù)之和等于0.a、b互為相反數(shù)a+b=0.

     。2)絕對(duì)值|a|≥0.

     。3)倒數(shù)(1)0沒(méi)有倒數(shù)(2)乘積是1的兩個(gè)數(shù)互為倒數(shù).a、b互為倒數(shù).

     。4)平方根

     、偃绻粋(gè)數(shù)的平方等于a,這個(gè)數(shù)就叫做a的平方根.一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0有一個(gè)平方根,它是0本身;負(fù)數(shù)沒(méi)有平方根.a(a≥0)的平方根記作.

     、谝粋(gè)正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作.

     。5)立方根

      如果x3=a,那么x叫做a的立方根.一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零.

      3、實(shí)數(shù)與數(shù)軸

      數(shù)軸定義:規(guī)定了原點(diǎn),正方向和單位長(zhǎng)度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.

      4、實(shí)數(shù)大小的比較

     。1)對(duì)于數(shù)軸上的任意兩個(gè)點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大.

     。2)正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)正數(shù),絕對(duì)值較大的那個(gè)正數(shù)大;兩個(gè)負(fù)數(shù);絕對(duì)值大的反而小.

      (3)無(wú)理數(shù)的比較大。

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 16

      軸對(duì)稱的定義:

      把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱,這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)。軸對(duì)稱和軸對(duì)稱圖形的特性是相同的,對(duì)應(yīng)點(diǎn)到對(duì)稱軸的距離都是相等的。

      軸對(duì)稱的性質(zhì):

     。1)對(duì)應(yīng)點(diǎn)所連的'線段被對(duì)稱軸垂直平分;

     。2)對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等;

      (3)關(guān)于某直線對(duì)稱的兩個(gè)圖形是全等圖形。

      軸對(duì)稱的判定:

      如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。

      這樣就得到了以下性質(zhì):

      如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

      類似地,軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

      線段的垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等。

      對(duì)稱軸是到線段兩端距離相等的點(diǎn)的集合。

      軸對(duì)稱作用:

      可以通過(guò)對(duì)稱軸的一邊從而畫(huà)出另一邊。

      可以通過(guò)畫(huà)對(duì)稱軸得出的兩個(gè)圖形全等。

      擴(kuò)展到軸對(duì)稱的應(yīng)用以及函數(shù)圖像的意義。

      軸對(duì)稱的應(yīng)用

      關(guān)于平面直角坐標(biāo)系的X,Y對(duì)稱意義

      如果在坐標(biāo)系中,點(diǎn)A與點(diǎn)B關(guān)于直線X對(duì)稱,那么點(diǎn)A的橫坐標(biāo)不變,縱坐標(biāo)為相反數(shù)。

      相反的,如果有兩點(diǎn)關(guān)于直線Y對(duì)稱,那么點(diǎn)A的橫坐標(biāo)為相反數(shù),縱坐標(biāo)不變。

      關(guān)于二次函數(shù)圖像的對(duì)稱軸公式(也叫做軸對(duì)稱公式)

      設(shè)二次函數(shù)的解析式是y=ax2+bx+c

      則二次函數(shù)的對(duì)稱軸為直線x=—b/2a,頂點(diǎn)橫坐標(biāo)為—b/2a,頂點(diǎn)縱坐標(biāo)為(4ac—b2)/4a

      在幾何證題、解題時(shí),如果是軸對(duì)稱圖形,則經(jīng)常要添設(shè)對(duì)稱軸以便充分利用軸對(duì)稱圖形的性質(zhì)。

      譬如,等腰三角形經(jīng)常添設(shè)頂角平分線;

      矩形和等腰梯形問(wèn)題經(jīng)常添設(shè)對(duì)邊中點(diǎn)連線和兩底中點(diǎn)連線;

      正方形,菱形問(wèn)題經(jīng)常添設(shè)對(duì)角線等等。

      另外,如果遇到的圖形不是軸對(duì)稱圖形,則常選擇某直線為對(duì)稱軸,補(bǔ)添為軸對(duì)稱圖形,或?qū)⑤S一側(cè)的圖形通過(guò)翻折反射到另一側(cè),以實(shí)現(xiàn)條件的相對(duì)集中。

      初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié) 17

      1、一元二次方程解法:

      (1)配方法:(X±a)2=b(b≥0)注:二次項(xiàng)系數(shù)必須化為1

      (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計(jì)算b2-4ac≥0

      若b2-4ac>0則有兩個(gè)不相等的實(shí)根,若b2-4ac=0則有兩個(gè)相等的'實(shí)根,若b2-4ac<0則無(wú)解

      若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

      (3)分解因式法

     、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0

      平方差公式:a2-b2=0→(a+b)(a-b)=0

      ②運(yùn)用公式法:

      完全平方公式:a2±2ab+b2=0→(a±b)2=0

     、凼窒喑朔

      2、銳角三角函數(shù)定義

      銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

      正弦(sin):對(duì)邊比斜邊,即sinA=a/c;

      余弦(cos):鄰邊比斜邊,即cosA=b/c;

      正切(tan):對(duì)邊比鄰邊,即tanA=a/b;

      余切(cot):鄰邊比對(duì)邊,即cotA=b/a;

      3、積的關(guān)系

      sinα=tanα·cosα

      cosα=cotα·sinα

      tanα=sinα·secα

      cotα=cosα·cscα

      secα=tanα·cscα

      cscα=secα·cotα

      4、倒數(shù)關(guān)系

      tanα·cotα=1

      sinα·cscα=1

      cosα·secα=1

      5、兩角和差公式

      sin(A+B) = sinAcosB+cosAsinB

      sin(A-B) = sinAcosB-cosAsinB

      cos(A+B) = cosAcosB-sinAsinB

      cos(A-B) = cosAcosB+sinAsinB

      tan(A+B) = (tanA+tanB)/(1-tanAtanB)

      tan(A-B) = (tanA-tanB)/(1+tanAtanB)

      cot(A+B) = (cotAcotB-1)/(cotB+cotA)

      cot(A-B) = (cotAcotB+1)/(cotB-cotA)

    【初中數(shù)的學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

    初中語(yǔ)數(shù)英知識(shí)點(diǎn)總結(jié)01-23

    數(shù)的整除知識(shí)點(diǎn)總結(jié)07-12

    總結(jié)有理數(shù)的知識(shí)點(diǎn)10-28

    近似數(shù)和平均數(shù)知識(shí)點(diǎn)總結(jié)及練習(xí)09-11

    數(shù)學(xué)有理數(shù)知識(shí)點(diǎn)總結(jié)07-13

    《看報(bào)學(xué)數(shù)》說(shuō)課稿10-12

    學(xué)奧數(shù)的利與弊09-09

    高數(shù)重要知識(shí)點(diǎn)總結(jié)怎么寫(xiě)07-17

    初中物理知識(shí)點(diǎn)總結(jié),初中知識(shí)點(diǎn)整理09-10

    奧數(shù)是學(xué)什么的08-14